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I.  INTRODUCTION 

The research project proposed in the original contract was to 

investigate the physical mechanisms responsible for the many anomalous 

effects associated with the stimulated Raman scattering in various media. 

In the early stage of the investigation, we soon realized that an intense 

laser beam propagating in liquid tends to self-focus into hot filaments. 

Self-focusing is apparently responsible for most of the anomalous 

effects observed in stimulated Raman scattering. It was then clear that 

one mutit first understand self-focusing before a1"    Bysteries about 

stimulated Raman scattering can be solved. 

We studied both theoretically and experimentally th^ physical 

mechanisms for the intensity-dependent refractive index and hence for 

self-focusing. Or; results showed that in most liquids, the optical Kerr 

effect is the dominant mechanism, but in some liquids, the electröstrictive 

effect also plays a non-negligible role. Both stimulated Raman and 

Brillouin scattering are initiated and fv-nhanoed by self-focusing and 

the formation of hot filaments. 

It was believed by most people that the observed hot filaments of 

few microns in diameter are just the self-trapped filaments predicted 

by Chiao, Garmirefand Townes. In our recent experiments, however, we 

showed that by using a single-mode laser, the observed hot filaments 

are in fact tracks of moving focal spots resulting from self-focusing. 

This result has important far-reaching consequences on many effects 

connected with self-focusing. 

We also constructed a set-up with two simultaneously Q-switched 

lasers at different frequencies. We used the set-up to generate 
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far-infrared radiation by beating the two laser beams in a nonlinear 

crystal. We were able to demonstrate for the first time the feasibility 

of obtaining an intense, tunable far-infrared pulse from difference- 

frequency generation. 

II.  RESEARCH ACCOMPLISHMENTS 

A. Self-Focusing and Stimulated Scattering 

Results of early investigation on stimulated Raman scattering in 

liquids showed that the Raman gain was two orders of magnitude larger 

than the theoretical prediction. It was conceived by us that this 

anomalous gain could be explained if the laser beam propagating in the 

liquid was inhomogeneous or contained hot filaments. By using a two-cell 

metliod, we showed that this is indeed the case.  (See Appendix l). As 

a result of intensity-dependent refractive index of the liquid, the 

laser beam tends to self-focus into hot filaments in  the liquid. We 

then investigated the physical mechanisms responsible for the intensity- 

dependent change of refractive index. From the variation of the self- 

focusing strength with temperature, we concluded that in most liquids, 

the optical Kerr effect is the dominant mechanism for self-focusing, but 

in some liquids, the electrostrictive effect is also important 

(Appendices II and III). By assuming that the laser beam breaks into 

filaments after self-focusing, some qualitative features of the observed 

stimulated Raman and Brillouln scattering were explained (Appendix III); 

however, no quantitative agreement was achieved. 

It was believed for some time that the observed hot filaments of 

a few microns were the demonstration of self-trapping predicted by Chiao, 

Garmire, and Townes. Nevertheless, the small size and high intensity 
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of tue filaments received no explanation. Recently, we made careful 

measurements on the duration, the intensity, and the spectrum of light 

in the filaments (Appendix IV). The results obtained from a single- 

mode laser indicated that it was not likely that the self-trapped 

filaments existed in our experiments. Closer investigation on the 

filaments and related effects showed that the filaments are actually 

composed of continuous series of moving focal points (Appendix V). This 

discovery clearly changes the current status of research on self- 

fjcusing and self-trapping. 

B. Far-Infrared Difference-Frequency Generation 

It was suggested earlier by several people that using two temperature- 

tuned ruby lasers can provide a tunable source of coherent far-infrared 

radiation. Many research workers tried, but failed. Only recently, we 

were able to demonstrate for the first time that such a tunable far- 

infrared source can indeed be achieved. In our experiments, we used 

two temperature-tuned Q-switched ruby lasers. The main difficulty which 

we had overcome was to synchronize the two laser pulses. We were able 

to obtain 1 mW of far-infrared radiation out of a 1/2 .mm crystal of 

LiNbO^. (See Appendix VI). By varying the ruby temperature from room 

to liquid N temperature, we can obtain a tuning range of 0 - 22 cm" 

for the far-infrared output. In addition, we were able to make the 

laser läse at either R, or R line. This extends the possible tuning 

range from 0 - 51 cm . The device would be extremely useful for the 

investigation of transcient or lifetime measurements on the low-lying 

resonance excitations. 
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C. Theoretical Calculations 

1) On Self-Trapped Filaments.  (Appendix VII) We showed from 

steady-state thermodynamic consideration that the assumption of possible 

field-induced phase transition can lead to the formation of self-trapped 

filaments of light in liquids. The model is an analog of Abrikosor 

vortex state in superconductors. 

2) On Optical Nonlinearities of a Plasma.  (Appendix VIII) Second- 

harmonic generation and stimulated Raman effects in a plasma were discussed. 

The second-harmonic generation from a solid-state plasma boundary was 

investigated. It was shown that second-harmonic generation from metals 

is dominated by the contribution from bound electrons in the surface 

layer. The prediction has been verified by N. Bloerabergen et a! Phys. Rev. 17^, 
813 (1968). 

3) On Photon-Magnon Interaction.  (Appendices IX and X) It was 

predicted that light scattering from magnons in ferro-, ferri-, and anti- 

ferro-magnets can be observed. The similarity between the spin-Raman 

effect and the vibrational Raman effect was emphasized and the possibility 

of stimulated Raman scattering from magnons was discussed. It was also 

suggested that the magnon-phonon coupling can enhance light scattering 

intensity. The results were presented as an invited talk in the 1967 

Annual Conference on Magnetism and Magnetic Materials. The prediction 

was verified by P. A. Fleury et al.  (Phys. Rev. Letters 17, Bk  (1966)), 

k)    On Quantum Statistics of Nonlinear Optics.  (Appendix XI) Non- 

linear interaction of light with matter was discussed from the quantum 

statistical ioint of view. It was shown that the rate of nonlinear 

interaction depends on the mode structure of the light fields and measure- 

ments of the statistical properties of the output fields can yield infor- 



mation about statistics of the input fields and the properties of the 

medium. The paper was given as an invited talk in the 1967 Enrico Fermi 

Summer Institute. 

5) On Permutation Symiüqtry ox" Nonlinear Susceptibilities.  (Appendix XII) 

Permutation symmetry of nonlinear susceptibilities was derived from the 

microscipic theory. It was shown that the permutation symmetry is essential 

for the existence of a time-averaged free energy. 
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APPENDIX    I 

BEAM DETERIORATION AND STIMULATED RAMAN EFFECT* 

Y. R. Shen and Y, J. Shaham 

Physics Department, University of California, Berkeley, California 
(Received 11 October 19G5; revised manuscript received 10 November 1965) 

The most important fundamental discrepan- 
cy between theory and experiments in the stim- 
ulated Raman effect is that the observed Raman 
gain is one to two orders of magnitude larger 
than the theoretical value.1 The latter is given 
by* 

* = (2™sV*s^)lxs''MY. 

where ws is the Stokes frequency, &§ the Stokes 
wave vector, E^ the laser field amplitude, and 
Xs" the resonant Raman susceptibility whose 
magnitude can be obtained from the spontane- 
ous Raman-scattering data. It was suggested 
that the observed anomalous gain might be the 
result of the multimode structure (or hot fila- 
ments) of the laser (pumping) beam,3 but Mc- 
Clung, Wagner, and Weiner, using a nearly 
single-mode laser beam in the experiments, 
Still found the presence of such an anomalous 
gain.1 This, however, does not eliminate the 
possibility of deterioration of the laser beam 
into multimodes as the beam interacts with the 
medium. In this paper, experimental evidence 
Is presented to suggest that scattering mecha- 
nisms in a medium can produce inhomogene- 
itles or filamentary structure in an initially 
homogeneous beam. We believe that these hot 
filaments are responsib). for the many anom- 
alous effects previously observed. 

A laser beam, Q switched by cryptocyanine 
solution and limited In cross section by an aper- 
ture in the cavity, was used to generate Stokes 
radiation in a 20-cm toluene cell (cell A). The 

laser intensity was varied by a Polaroid prism 
outside the laser cavity.  Another cell (cell B) 
of variable length, filled with water, benzene, 
acetophenone, or nitrobenzene, was inserted 
between the laser and the toluene ceil.  The 
threshold of the stimulated Raman scattering 
was then measured as a function of the length 
of cell B.  The results are shown in Fig. 1. 
The curves clearly show that the medium in 
cell B can distort the laser beam in such a 
way as to help significantly the Raman genera- 
tion in toluene.  Here, the Raman threshold 
of toluene first increases and then decreases 
sharply as the length of cell B is increased. 

0 J.5 5.0 T.I 100 
ttngth of icotttrmg liquid in front of thtt Foluen« cwli, i ffl 

FIG, 1.  Rnman thrtshDld in toluene versus tho   ell 
length of a scattering cell in front of the toluene cell. 
The scattering cell was filled with water, bcnzrni', 
acetophenone, or nitrobenzene. 
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This suggests that the distortion of the beam 
is due to some kind of stimulated scattering 
In cell B.  The initial rise of the threshold is 
L^lleved to be the result of insortion loss in 
cell B.   No Raman radiation was generated in 
cell B, except for the case of nitrobenzene or 
acetophenone with the cell longer than 3.5 cm. 
It Is therefore reasonable to assert that the 
beam distortion is due to forward scattering 
through generation of acoustic and thermal 
«train (Brillouin and Rayleigh scattering).  The 
maxima and the slopes of these curves show 
that if forward scattering is responsible for 
the beam distortion, nitrobenzene should have 
the largest scattering cross section, followed 
by acetophenone, benzene, and water.  The ex- 
isting data on incoherent light scattering give 
the following scattering intensity ratio4: 

W'AC^B water" 
10.88:5.66:3.15:0.17. 

Above threshold, the intensity of the toluene 
Stokes emission was found to increase appre- 
ciably when a 7.5-cm nitrobenzene cell is in- 
serted between the laser and the toluene cell, 
even though the laser power is somewhat de- 
pleted by the generation of Raman emission 
in nitrobenzene.  It was also noticed that the 
laser beam coming out from a Raman cell was 
generally less homogeneous than the original 
beam.  Hot, thin laser filaments formed in 
Raman-active media have been observed by 
other workers.5 

That the forward scattering may be respon- 
sible for the anomalous Raman gain is alsc re- 
flected in the temperature effect of the Raman 
emission. Fig. 2 shows the Raman threshold 
in nitrobenzene and toluene in a 15-cm cell 
as a function of temperature.  The observed 
effect is too large to be attributed to the change 
In the Raman scattering itself.  This is con- 
firmed by the fact that when a 7.5-cm nitro- 
benzene cell was inserted in front of the toluene, 
the toluene Raman threshold remained more 
or less constant with temperature.  If the tem- 
perature of the nitrobenzene cell was varied 
Instead, appreciable change in the toluene Ra- 
man threshold was, again observed.  The curves 
indicate less beam distortion for higher tem- 
perature.  This suggests that the forward stim- 
ulated Brillouin effect may be the dominating 
mechanism for beam distortion, since the ef- 
fect would then be stronger for smaller acous- 
tic damping, and hence for lower temperature. 

Theoretically, a laser beam can be distort- 
ed or deteriorated into multimodes through 
nonlinear interaction between light waves Ktid 
pressure (acoustic) and thermal waves in the 
medium.  The interaction is governed by the 
set of coupled electromagnetic and acoustic 
wave equations and the heat diffusion equation. 
In the limiting case where only the static pres- 
sure and thermal strain (electrostriction) are 
considered, this would lead to the beam-trap- 
ping phenomenon proposed by Chiac, Gar mire, 
and Townes.* More generally, the initial la- 
ser intensity distributica in the frequency and 
wave-vector space would be broadened a great 
deal by this mechanism. In other words, a 
single-mode laser beam can be spoiled into 
many coherent spatial and temporal modes, 
which then give- rise to hot filaments in the beam 
and Intense spikes in the laser pulse.  Usually, 
'he thermal effect is negligible compared to 
the pressure effect.  The Xorward Brillouin 
scattering (which includes electrostriction) is 
possibly responsible for the distortion of the 
beam.  It would have a threshold much lower 
than the Raman threshold in many media, as 
seen from the estimate for the case of beam 
trapping.* 

Most of the anomalous Raman effects can 
be explained by the multimode theory.9 Li par- 
ticular, AT cohere t laser modes of comparable 
intensities would give a maximum Stokes gain 
which is about N times larger than the aver- 
age gain.T The details of the theory will br    * 
reported elsewhere. 

so      40       so      «a 
Call lamparatur«, ' C 

70 ■0 

FIG. 2.  Raman threshold of toluene and nitroh«n?.enc< 
as a function of temperature. 
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ELEC ^ROSTRICTION,   OP11CAL KERR EFFECT 
ANJ SELF-FOCUSING  OF  LASER BEAMS* 

Y. R. SHEN 
Physics Department, University of California, Berkeley, California 

Heceived 26 January 1966 

Electrostrictive coefficients and opti;;al Kerr constants for liquids are derived. Their relative importance 
in the self-focusing of a giant-pulse laser beam is discussed. 

A laser beam propagating in an isotropic, 
transparent medium induces an Increase in the 
refractive index proportional to the laser inten- 
sity through electrostriction and optical Kerr ef- 
fect. The jitensity-dspendent index of refraction 
can lead to self-focusing of the laser beam, as 
first envisaged by Arkaryan [1] and by Chiao et 
al. [2], and recently computed by Kelley [2]. Ex- 
perimentally, it has been observed that the beam 
does get highly inhomegeneous after traversing 
through a liquid medium [4,5]. The self-fcousing 
action, with the result of hot-filament foruation, 
gives rise to the anomalous gain in the stimulated 
Raman scattering. Therefore, knowledge about 
electrostrictive coefficients and optical Kerr con- 
stants for various liquids is now extremely help- 

378 

ful in work on stimulated scattering in liquids. 
The optical Kerr effects in some liquids have been 
measured by Gires and Mayer [6], and the inten- 
sity-dependent refractive indices by Maker et al. 
[7]. In this note, they are derived in terms of re- 
fractive indices, dielectric constants, isothermal 
compressibilities and d.c. Kerr constants. Their 
relative importance in self-focusing of a giant- 
pulse laser beam is discussed. 

The Clausius-Mosotii relation gives the change 
of the refractive index in terms of the variitions 
in density and in polarizability, Ap and Aa. 

• This research Is supported by the U.S.Office of 
Naval Research under Contract Nonr-36S6(32), 
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A« = (A«)p + (An),Y (1) 

(«2. l)(„2 + 2)[(ip/po) + (Aa/af0)]/6«0. 

„2 a/2     „2   ^y 8ff ^2 (2) 

In the presence of an optical field E{r. t). Ap obeys 
the driven acoustic wave ;quation 

32 

a/2 

Here, v - {l/p0ß)2 is the acoustic -velocity, ß the 
isothermal compressibility, r the acoustic damp- 
ing, and y = 2rt0pü(a«/ap) = |(»§- l)(«2 + 2). Since 
4p cannot follow the driven force at optical fre- 
quencies, only the low-frequency cornpcnents of 
Ap should be considered. In the case of a rrono- 
chromatic field E(r,f) = E{r)cos(k-r-u.'t), one 
finds 

(A»), v k2 
(3) 

witn Kp = y2ß/6iin0\ defined as the electrostric- 
üve coefficient. Tht fjlectrostrlctive coefficients 
calculated are shown in table 1 for a few liqvids *. 

The change of the polarizability is assumed to 
come entirely from the orientational variation of 
the arisotropic molecules. Let the orientational 
distribution function be/C-'.tf,^), where 9s(p and 
4/ determine the orientation of a particular mole- 
cule. The change of the polarizability can then be 
calculated from the theory of Lengevin [9]. We 
have {4) 

Aot = j p(Af) sin 9 de d^ di>/ E j f sin S dB do du . 

Here. /> is the induced dipole moment, and A/ = 
/ -/0 obeys the equation 

[(d/dt) + (1/T)] i/ = [äf)jT 
(5) 

{äf)x=C[exp(-U/k'n. I], 

where T x bncßv/kT is the relaxation time, a the 
dimension of molecules, v the viscosity coeffi- 
cient, C the normalization constant, and f/v.ie 
potential energy of the anisotropic molecule in 
the E field. Again, since A/ cannot follow vari- 
ations at optical frequencies, only the low-fre- 
quency part should be taken into account. In the 
first order, one finds, for a linearly polarized 
monochromatic field, 

(6) UZ\ (A«)a=4-KaA(|^) 

* The electrostrictive coefficients are about 4 times 
larger than those calculated in ref. 2. The error can 
be traced back to the smaller values of 0 they used 
and the missing of a factor 2. Their values oi optical 
Kerr constants should also be smaller by a factor of 2 
[8J. 

Table ! 
F'ectrostrlctive coefficients, Kp. optical Kerr con- 
-'  nts, ka. and the d.c. Kerr constants. (Äj),^, cal- 
culated at the .vavclength of the sodium D line for vari- 
ous liquids. In calculating these constants, n0 is ob- 
tained from the International Critical Tables and ß and 
6 from the Handbook of Chemistry and Physics. All 

physical constants are taken at 2u0C if possible. 

Kp x 1U7 Ka x 108 

(AVdc ' '"'■ 

Carbon- 
tetrachloride 1.21 0.67 0.74 

Carbon- 
disulphide 2.33 32.fi 32.26 

Hcxane 1.06 0.45 0.45 
Cvclohexane 1.06 0.7b 0.74 
m-xylsne 1.20 7.5!) b.5b 

Benzene 1.33 5.73 5.93 
Toluene 1.25 6.50 7,53 
Chlorobenzenc 1.20 9.93 91 
Bromobenzene 1.50 14.35 •:>i 

NMtrobenzene 0.92 26.4 2560 
Aniline 1.00 3.22 -12.3 

Chloroform 1.03 1.70 ■33.2 
Acetone 0.75 1.03 163 
Methvlalcohol 0.5b 0.17 9.7 
Lt'^vlaicohol 0.(56 0.21 7.6S 
Butylalcohol 0.64 0,41 -36.3 

and for a circularly polarized field 

{A«)ff = |A„A(ie2) (7) 

with Ka = [(«2. 2)(«2. i)(c +2)/(6 + 2)2{5 - l)](Kj)dc 

defined as the optical Kerr constant.  Here, 5 is 
the dielectric constant, and e is given by the 
Debye relation 

(5 - l)/{5 + 2) = [{< - !)/(£ + 2) + 4sp0;t
2/9»^r] . 

/j being the permanent dipole moment of the 
molecules. (A'j)^c is the part of the d.c. Ken- 
constant originated from the induced dipole mo- 
ments only and is always positive.  For non-polar 
molecules, one finds Ka « {^\>^c- For polar 
molecules with large M, the optical Kerr constant 
can be much smaller than the d.c. Kerr constant 
in absolute magnitude. The optical Kerr con- 
stants, for various liquids, obtained with (Ki}^- 
caiculated by Raman and Krishnan [9], are given 
in table 1. The d.c Kerr constants are also 
given for comparison. 

For a giant laser pulse of pulse width \. it 
can easily be shown that if T « A, eq. (6) is still 
valid, but (An)a is now proportional to ;f (>", 0 ;2, 
which wies with time. For most liquids, this is 
true since T< 10" 1° sec. The density variation 
Ap, however, cannot follow the giant pulse. As- 
suming the distribution of laser intensify over 
the cross section and time to I«! 
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e{r,t)2 = Aexp(-a2»-2)|, ' 
2A) 

for 
for 

t « A 
f s A m 

one can get a rough estimate of the density valu- 
ation by neglecting v2(ip) in eq. (2). This is a 
good approximation for a < 100 and r < 1/a. The 
result, together with the optical Kerr effect, 
gives a total change of the index of refraction 

An = [Apt;202(1 - a2»-2)/3 + Kat]^\Aüxp{-a2r2) 

for / « A 
(S) 

- [Api'2a20 - «2>-2)(2A3 - 6 A2/ ♦ 6A/2 - t3) H 

+ A'ff(2A - t)] jX A exp (- a2»"2)    for / -- A 

Eq. (9) shows that at t = A, the ratio {in)p/(a«)ff 

is about 10-2Ap/Aa for s» » 1.5 x 105 cm/sec, 
A = 2 x lO"8 fee, and a = 30 cm"1. This ratio 
becomes larger at 'ater times. 

The increase of refractive index with the laser 
intensity leads to self-focusing of laser beams in 
liquids. Experiments [4,5,10] show that the sell- 
focusing action is very strong in CS2, followed 
in decreasing order by nitrobfnzene, bromoben- 
zene, toluene, benzene, chl&ruform, CCI4, hex- 
ane and methylalcohol. Table 1 shows that the 
magnitudes of the optical Kerr constants of these 
liquid-r follow exactly the same order. We have 
also seen a large reduction of self-focusing action 
in these liquids when a circularly polarized laser 
beam is used [10]. This makes one believe that 
the optical Kerr effect is responsible for self- 
focusing. However, for liquids with small optical 
Kerr constants, electrostriction may also be im- 
portant. H one uses eq. (9), one would find at 
t = A, (iM)p/(A«)a »» 0.4 in CCI4. The electro- 

strictive coefficients have a strong positive tem- 
perature dependence, while the optical Kerr con- 
stants have a weaker negative temperature de- 
pendence. Temperature measurements [10] in- 
deed show that in all liquids with large optical 
Kerr constants, the self-focusing action de- 
creases with Increase of temperature, but In 
CCI4 and hexane, it increases with increase of 
temperature. The optical Kerr effect is also re- 
sponsible for spectral broadening in the stimu- 
lated Raman scattering [11], when the laser radi- 
ation has two or more modes separated by about 
1 cm-1. The electrostriction, however, should 
have very little effect on spectral broadening, 
since the component of Ap at the beat frequencies 
of the laser modes would be extremely small. 
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Self-Focusing and Stimulated Raman and Brillouin Scattering 
in Liquids* 
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Experimental results on the self-focusing of a laser beam in many liquids are reported. It is shown that 
the optical Kerr effect and electrostriction cannot explain the temperature variation of self-focusing in 
some liquids. Forward stimulated Brillouin scattering seems important in such cases. Measurements on 
the generation of stimulated Raman and Brillouin radiation in liquids are presented. The effect of self- 
focusing and self-trapping on the forward-backward asymmetry in the Stokes generation is discussed. 
Other qualitative features in the stimulated Raman and Brillouin scattering arc explained. 

I. INTRODUCTION 

WHEN a high-intensity laser pulse traverses a 
certain distance in a liquid, the beam cross-section 

often reduces, and in some liquids, thin filaments of 
extremely high intensity appear. This phenomenon, 
which is generally known as self-foe Jng and self- 
trapping of light beams, has been the subject of intense 
theoretical1-7 and experimental*-" investigation re- 
cently. It is self-focusing and self-trapping that give 
rise to the many anomalies observed in stimulated 
Raman and Brillouin scattering in liquids. Physically, 
self-focusing arises because the refractive index {real 
part) of the medium increases with the beam intensity 
(a coherent elastic-scattering process), and because 
stimulated Brillouin and Rayleigh scattering near the 
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forward direction occur via acoustic and orientational 
excitations in the medium (a coherent inelastic-scat- 
tering process). An alternative way of describing 
self-focusing is that the width of the beam intensity 
distribution over its spatial Fourier components in- 
creases with distance. 

The intensity dependence of refractive indices has 
been investigated by many authors," In a nonabsorbing 
medium, it is due to optical Kerr effect, electrostriction, 
and nonlinear electronic polarizability.2 For ordinary 
^-switched laser intensity, the steady-state refractive 
index can be written in the form 

M = «<)+(«ar+«jp+«},)| I E I', 

where E is the laser field strenpth, and the coefficients 
«!<., «j«, and nit are associated with KCT effect, electro- 
striction, and nonlinear electronic polarizability, respec- 
tively. For most liquids which have been subject to 
investigation, «i, ranges from 10"" to 10"" esu, while 
tti, is of the order of ICH1 esu. In the normal dispersion 
region, «a, is about 10~15 or lO"'4 esu as estimated from 
the nonlinear polarizability for third-harmonic genera- 
tion,20 and should be negligible compared with «j, and 
tijf. It is, however, believed that the Kerr effect gives 
the dominant contribution to the intensity-dependent 
part of the refractive index in liquids. The reason is 
simple. The Kerr effect, arising from molecular re- 
orientation41 and molecular redistribution,22 responds 
almost instantaneously to the Q-switched pulse, but 
the elcctrostrictive effect, which involves mass transfer 
to a region of high beam intensity, cannot follow the 
rapid intensity variation of the pulse. One can actually 
show that for a ICH-sec pulse, the electrostrictive 
contribution to the refractive index would be negligible 

'• P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. 
Letters 12, 612 (1964): F. Gircs and G. Maver, Compt. Rend. 
258, 2039 (1964). 
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New York, 1964), p. 1559. 

" P. Debye, Marx's llandbiwh der HadiMogei, VI (Academisehe 
Verlagsgeselkchaft. Leipzig Germany, 1925), Chap. V, p. 768; 
Polar Molecules (Dover Publications. Inc., New York, 1929). 

a.S, Kielich, Mol. Phvs. 6, 49 (1963); R. W. Hcllwarth, Phys. 
Rev. 152, 156 (1966), 
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compared with the Kerr effect in most liquids. (See 
Sec. Ill for more detail.) 

Beam components propagating in the off-axis direc- 
tions can also grow in intensity through stimulated 
Brillouin and Rayleigh scattering. This also leads to 
self-focusing phenomenon. Self-focusing by this mecha- 
nism has so far received little attention. In fact, the 
gain of stimulated Brillouin scattering near the forward 
direction is rather high even for a short (J-switched 
pulse. For self-focusing of the laser pulse in liquids with 
small Kerr constants, stimulated Brillouin scattering 
could be as important as the Kerr effect. Tn this paper, 
we show, from our measurements on the temperature 
variation of self-focusing action in different liquids, 
that this is indeed the case. The relative importance of 
the Kerr effect and stimulated Brillouin scattering to 
self-focusing can be obtained from these measurements 
since the Kerr effect is inversely proportional to tem- 
perature, but sti.nulatcd Brillouin gain increases as 
temperature increases. 

While self-focusing in liquids seems to be qualitatively 
understood, the dynamics with which a beam, after 
being self-focused, breaks into self-trapped filaments 
(known as small-scale trapping15)  is not yet under- 

B^tr3*&-;-{jiir£: 

FIG. 1. E.xpennienlai set- 
up of the two-cell method 
for measuring self-focusing 
strength of a liquid. 

stood,' although the size of the filaments seems to be 
connected to the Kerr constant of the medium." As one 
would expect, both self-focusing and self-trapping 
affect dramatically the nonlinear optical processes in 
liquids, in particular, stimulated Raman scattering and 
backward stimulated Brillouin scattering. Self-focusing 
gives rise to the observed threshold in stimulated 
Raman and Brillouin scattering," and the presence of 
intense filaments is responsible for the anomalously 
high Raman and Brillouin gain aoove threshold.*"" 
Without knowing the dynamics of filament formation, 
it is, howevei, difficult to calculate qualitatively the 
effect of self-focusing on the stimulated scattering. In 
this paper, we present some experimental results on 
first-order Stokes and Brillouin generation, and discuss 
qualitatively how their characteristics, the forward- 
backward asymmetry of the Stokes radiation, the 
temperature effect, etc., are dominated by self-focusing 
and self-trapping. Experimental results will be shown in 
Sec. II, followed by discussion in Sec. III. 

II. EXPERIMENTS 

A 3 in. ruby laser, Q-switched by cryptocyanine 
solution, was used in the experiments. The beam was 
limited to a diameter of 2 mm. The average peak 
power of the ISnsec Q-switched pulses was about 
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FIG. 2. Temperature variation of self-focusing in different 
liquids. A longer threshold length of nitrobenzene indicates 
weaker self-focusing action. See the text. 

75-100 MW/cms, depending on the cavity parameters. 
The self-focusing action of the beam in a liquid was 
investigated by the two cell scheme.' (Figure I.) Here, 
the laser beam was passed through two cells in series. 
They were separated by a distance of 2 cm to allow 
for windows and a beam splitter when the back-scattered 
radiation was monitored. The first ceil was filled with 
the liquid under investigation, and the second cell with 
liquid of low Ramau threshold or strong self-focusing 
action, such as nitrobenzene or carbon disulfide. Self- 
focusing of the beam in the first cell was then easily 
detected by the decrease of Raman threshold for liquid 
in the second cell. To avoid complication, the length of 
the first cell was always kept below its own Raman 
threshold. This method has much higher sensitivity 
than the single-cell method in which the self-focusing 
action is measured by the observed Raman threshold 
for liquid in the same cell.1' It is sensitive in the sense 
that relatively weak self-focusing action in liquids such 
as hexane and water can now be measured.53 One can 

40 «0     ' BQ 

Temerot-rt  fCJ 

FtO. i. Effect uf a niirubuuene self fotu-.ing cell uu the temper- 
ature variation of the Raman tbrethold of a 15 cm toluene cell. 
Length of thenitroheiuenecell: (a) 0, (b) 1.3, (c) 2.5tand(d) 5.0 
cm. 

a In liquid with weak self-focusing strength, stimulated Ra.nan 
and Brillouin scattering may appear before the beam if. »elf 
focused to a minimuni cross section, t'oiiserjiienlly, Kaman an.! 
Brillouin thresholds of the liquid are no longer a measure of the 
self-focusing strength. Hexane Is a good example. 
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rASLE 1. The relative self fucusing strengths in different 1! measured in terms of the ceil length of the liquid which reduces 
the Raman threshold of IS-cm toluene by 5% when inserteü in iront of the toluene cell. For nonpolar liquids, u^ arc obtained from 
the dc K.err constants in Ref. 30. I-or polar liquids, «i, arc either obtained from the expsrimental values of M. Paillette [Conint. Rend. 
262, 264 (1966)] or from the calculated values of Y, R. Shen [Phyä. Letters 20, 378 (1966)]. R« is calculated from Kq. (10) with 
k,t = 2/d and rf-0.1 cm for a lOO-MW/cm' ruby-laser beam, gg is calculated from Eq. (16) with k,z~2/d, rf-0.1 cm, AK-T, and 
« = 2X 10-« sec for a lOO-MW/cm' ruby-laser beam. 

O^äcrved self- 
focusing strength 

(in.) 101: Hi. 10-'fR 10J?B 102 (at+ifl) 
(la/ft) 

(%) 

Carbon disulfide 1 U.3 6.8 7.4 7.54 10.9 
Nitrobenzene % 8.Ü 6.1 4.1 6.51 6.7 
Hromolwnzene 1 4.7 4.5 3.« 4,80 6.7 
»n-xylenc U 3.0 3.7 4.8 4.18 13.0 
Benzene 11 2.3 3.2 5.0 3.70 15.6 
Aniline 4 1.1 2.2 4.0 2.60 18.2 
Chloroform 5 0.53 1.57 2.6 1.83 16.6 
Carbon tetrachloride H 0.33 1.24 2.5 1.49 20.2 
Hexanc H 0.23 1.06 3.5 1.4! 33.0 
Acetone 6 0.23 1.07 2.7 1.34 25.2 

easily determine the relative self-focusing strength of 
different liquids using this method. With the laser peak 
intensity at about 100 MW/cm!, we measured the cell 
lengths of liquids required to reduce the Raman thresh- 
old of toluene in the second cell by 5%. The results, 
together with ftt, are given in Table I. Note that the 
self-focusing strengths ot various liquids, except perhaps 
acetone and hexane, follow the same order as their 
optical Kcrr constants. 

The temperature dependence of self-focusing wrs 
investigated hy varying the temperature of the first 
cell (15 cm in length). The second cell was filled with 
nitrobenzene in this rase. The results for a few liquids 
are shown in Fig. 2. It is seen that the self-focusing 
action in toluene decreases with increase of tempera- 
ture. This holds for all liquids with large Kerr constants. 
The temperature variation is similar to that of Raman 
and Brillouin threshold of liquid in a single cell.' This 
supports the idea thai stimulated Raman and Brillouin 
scattering in these liquids are initiated by strong self- 
focusing of the beam into hot filaments. However, in 
acetone, hexane, and carbon tetrachloride, aelf-focusing 
gets sttonger with increasing temperature, suggesting 
that besides the Kerr effect, some other mechanism 
now comes into play. As we shall show in the next 
section, the contribution of forward stimulated Brillouin 
scattering to self-focusing is indeed non-negligible in 
these liquids. The question also arises on whether self- 
focusing in the first cell would eliminate the tempera- 
ture dependence of Raman threshold in the second cell. 
This was tested by using a 15-c.m toluene cell with 
variable temperature preceded by a nitrobenzene 
focusing cell. As shown in Fig. 3. the temperature 
variation of Raman threshold in toluene changes only 
slightly with the focusing cell. The reason is that a 
major part of self-focusing of the beam actually happens 
not in the first cell but in the second cell. The filaments 
have not yet been formed in the first cell. The tempera- 

ture variation in toluene did nearly vanish when the 
nitrobenzene cell was above its own threshold, but the 
results become less meaningful because of the possi- 
bility of depletion of laser power by stimulated Raman 
and backward Brillouin scattering in the nitrobenzene 
cell. 

Wang13 has shov.-n that for a single cell, the inverse 
Raman threshold length varies linearly with the square 
root of the laser power.' We found the same result in 
CSa and nitrobenzene at relatively low power level, 
as shown in Fig. 4. As the laser power increases, the 
curves start to deviate from the straight line. This 
suggests that another mechanism for self-focusing may 
have set in at higher laser intensity. 

We are also interested in the generation of stimulated 
Raman and backward Brillouin scattering In. üquid with 
strong self-focusing properties. A toluene cell was used 
in the measurements. One of the interesting anomalies 
resulting from self-focusing and self-trapping is the 
forward-backward asymmetry in stimulated Raman 
process. Figure 5 shows the variation of the first-order 
Stokes power as a function of the cell length at three 
different laser powers. Note that the forward-backward 
asymmetry varies with the cell length, altliough the 
backward Stokes power is always higher just above 

bT ~5:« oe 

I 
I 

FIG. 4. Variation of the square root of Raman threshold power a'i a 
function of inverse of the Cell len^ih in CS, and nitrobenzene. 
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10 20 30 

C»ll   length  (cm) 

FIG. 5. First-order forward and backward Stokes power versus 
the cell length at three laser powers, A = 80, 
MW/cmä. 

= 67, and ^»=53 

threshold. The forward Stokes becomes more intense at 
long cell lengths. Care was taken to insure that the 
asymmetry was not induced by reflection from windows. 
In Fig. 6, the variarion of Stokes power, generated from 
a 20-cm toluene cell, as a function of laser power is 
given. The set of curves on the left corresponds to the 
case where a 2.5-cm nitrobenzene cell was inserted in 
front of the toluene cell. As expected, the curves look 
similar to those of Fig. 5. The variation of backward 
Brillouiii power with laser power is also incorporated 
in Fig. 6. 

1000 

1.4 18        2.2        2.4 

Lose  power (MW) 

Fin. 6. Variation o( Stokes and firillouin power generated in a 
20-cni toluene cell as a function of laser power, with and without 
a 2.5-cm nitrobenzene self-focusing cell. 
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Fio. 7. Variation of Stokes and Brillimin power with las*r power 
in 15-cni toluene at two different temperatures. 

Figures 7 and 8 give the variation of Stokes and 
backward Brillouin power with the laser power in 
toluene and hcxane, respectively, at two different 
temperatures. It is seen that at the higher temperature, 
the Raman and Brillouin threshold for toluene is 
higher, but as the laser power increases, the Brillouin 
radiation finally becomes more intense than the one at 
the lower temperature. In hexane, the Brillouin radia- 
tion has lower threshold and higher power at the higher 
temperature. No stimulated Raman radiation from 
hexane was observed. 

100 

'V.') 

Fie. 8. Variation of Brilloum power with laser power in 15-cm 
hcxane at two different temperature». 
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The above measurements of iniensities were made by 
using silicon photodiodes and a Tektronix 555 oscillo- 
scope. The intensity values correspond to the peak 
values of t! e integrated pulses. The temporal structure 
of the generated Stokes and backward IJrillouin radia- 
tion was investigated by using an FW-114 photodiode 
and a Tektronix 519 oscilloscope. Both the forward and 
the backward Stokes radiation from toluene were com- 
posed of short pulses of about 10"9 sec long, in partial 
agreement with observations of other workers.18'24 

The Brillouin radiation also contained short pulses, 
somewhat similar to what was observed by Mater d al.?h 

but they are not as sharp as the pulses in the Stokes 
radiation. Near threshold, both Stokes and Brillouin 
radiation consists of a single short pulse. Because of the 
short cells we used in our experiments, the depletion of 
total laser power in the Raman and Brillouin generation 
was not nearly as much as in the case of Maier et a/.25 

III. CALCULATION AND DISCUSSION 

Generally speaking, self-focusing arises as a result of 
interaction of the light beam with the density variation 
and molecular reorientation and redistribution in the 
medium. The propagation of the light beam in liquid is 
described by the wave equation 

{-^%)*™--%~  <' 
In this case, the polarization of the medium can be 
wricten as 

P=x. E(r, 0, 

»1-1,2,... 
(2) 

where terms with m>l arise because of correlation 
between molecules.21 The nonlinear polarization i>NL 

appears as a result of change in p and am induced by the 
light fields. 

PNL(rI/)=[(dx/öp)Ap(r)/) 

+ L {dx/daJAonit, /)]E(r, /).   (3) 
m 

The density variation Ap obeys the acoustic wave 
equation 

V rdP      t3 dll Sir '       ' 

(4) 

Here, ti=(l/p/J)l/2 is the acoustic velocity, ß is ihe 
isothermal compressibility, T is the acoustic damping, 
7 is defined as ?=p(ö«/<'p). and ! E \-{t, t) is the slowly 

'-' M. Maier, W. Kaiser, and J. A. (Jiunlmaine, I'hvs. Rev. 
Letters 17, 1275 (i'JOÖ). 

u M. Maier, \V. Rother, and \V. Kaiser, Appl. Phys, Utters 10, 
80 (1967). 

varying part of A-(rt I). The change Aai, reflecting 
variation in the orientational distribution, is governed 
by the equation21 

(d/dZ+l/riJuMr, <) =U/r) i E |2{r, /),      (5) 

where A is a constant inversely proportional to tem- 
perature, and T is the orientalional relaxation time. 
Similar equations probably govern &am which are 
changes induced by molecular redistribution. The 
relaxation time for molecular reorientation and redis- 
tribution is usually i-ather short (^SXIO-'1 sec).26 if 
we limit ourselves to the low-frequency variation of 
/•.."-( r, /),27 then ^„(r, I) would respond almost instan- 
taneously to j li j2( r, t). To the first order, we can write 

£ (dx/d^&a^in/2Tr]n2a \ \ E l2(r, I).    (6) 
m 

Self-focusing should therefore be described by the 
solution of Eqs. (1), (3), (4), and (6). If both Ap and 
I E I2 are Fourier-analyzed, then each Fourier com- 
ponent of Ap consists of two parts. The part in phase 
with the driving omponent leads to change in the 
(real) refractive index: This is known as electrostriction. 
The part 90° out of phase with the driving component 
leads to stimulated Brillouin scattering. From Eq. (4), 
we find that the electrostrictive part is given approxi- 
mately by 

(7) 
It can easily be shown that for a Gaussian beam of 
radius tu and pulse duration i, the first-order solution 
of Eq. (7) with rä-COo yields at the peak of the laser 
pulse, 

{dxJdp) Ap^;(HrW/W) nu \ E Is, (8) 
where 

This is because the spatial density variation cannot 
follow the rapid change in the laser intensity, so that 
the — y2 term is small compared with the d*/!)? term in 
Eq. (4). For liquids under investigation, HJ,, is about 
1 to 10 times «j„. With t^'lO5 cm/sec, 3ä;10-

8
 sec, and 

foSrO.l cm, one sees immediately from Eqs. (6) and 
(8) that the clcctrostrictive effect is negligible com- 
pared with the Kerr effect, and hence is not responsible 
for the tempicraUire variation of self-focusing in 
liquids. 

Even if the elect rostrictive effect is neglected, it is 
still difficult to find an analytical solution from the 

aC. W. Cho, N, D. P'olu. I). 11. Rank, and T. A, Wiggins. 
Phys. Rev, Letters 18, 107 (1967). 

" Stimulated Ravlcigh srattering with a large frequency shift 
may lie le.cs importaiit for seif■ forusing, since it is essentially 
initiated at the noise level. 

r-rM 
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above equations to describe self-focusing. However, as 
we mentioned earlier, self-focusing can be described by 
the amplificatior. of Fourier components propagating 
in the off-axis direction. 

Let us assume a plane wave 

Eo= ä £« exppko-1- J'W] (9) 

as the pump field propagating in the medium along the 
z direction. We are interested in the amplification of a 
weak wave E, with wave vector k, and frequency w.. 
Bespalov and Talanov4 and Chiao et air* show that the 
change of refractive index (essentially due to Kerr 
effect) actually induces an exponential gain for the 
amplification of E,. 

g*~k.l- (WW^CVwoW.        (10) 

assuming (wo—w,)«l/r. It turns out that the e-folding 
length for the growth of E, with k„~2/d is just the 
self-focusing distance Zioe of a beam with a diameter 
i,if(/fe„Ao)s«2(«^'n«)So,.M 

s^WCVwo)^]-1". 

The optimum gain is 

(«B)opt = W»«/««)8o, 

(11) 

(12) 

which occurs at (*„) „pt=ifeoC («*/««) So']1"- As So1 in- 
creases, (g8)opt would finally become much larger than 
the gain at k„=2/d. Then, one may find that in a 
distance less than Zf0<), the wave E, with (A„)opt 
becomes stronger than E, with k,x=2/d, although 
initially the former is much weaker than the latter. 
The actual self-focusing distance would then become 
smaller than Z|M,4 and would depend on So"2" with 
|<«<1. This is likely to happen in liquids with large 
Kerr constants. As an example, we have nj= i.l3X 10""" 
for C5j. For a 100-MW/cm1 beam with d=0.l cm, and 
So^SXlO5 esu, we find (gi!)Up,=0.92 and (|Ä)*.._s/d= 
0.067. This probably explains why in Fig. 4 the inverse 
of the self-focusing distance depends on the laser 
intensity as .P»ocf,0

,» with «>^ at high intensity. For 
liquids with small Kerr constants, {gii)o»t is not very 
different from (|fc)i„_j/i even at an intensity of 100 
MVv/cm». 

The weak wave £. can also be amplified through 
forward stimulated Brillouin scattering, governed by 
the coupled equations 

(- V*-o>.h./cl) E. = (-W/c») if/brp) £o V, 

(- V~W„VV- »W/^) Ap* = " (7/8^) V(£,*£.), 

(13) 

with w,+w,e=uo. For scattering in the near-forward 

»R  Y. Chiao, P. L. Ktlley. and E. Garmirc, Phys. Rev. 
Letters 17, 1158(1966). 

direction, k.-fk.»=k(i, the Brillouin powei gain is39 

gfl = (ktT/vkn) +l(ktV/vktr)*+ fa,.V|3r,nV32Irc
!)]"--!. 

(14) 

Ordinary liquids have 7^1 and ß^lQr™. Therefois, at 
the same laser intensity, gn would be much greater 
than git, if the laser beam were continuous. 

In practice, however, the Q-switched laser generate«; 
a short pulse of pulse width S. The amplification of Et 

due to Kerr effect is st;:i given by Eq. (10) with W 
replaced by Sos(/), since the response of Kerr effect to 
So4,'/) is almost instantaneous. The Brillouin gain, on 
the other hand, is greatly reduced. To estimate the 
reduction, let us assume that Eo and E, are infinite 
plane waves whirh can be represented by 

Eo=AoAto   2^   exp[i(wo+»tAa))(H0A-üT/f-/)],    (15) 
m—A'/S 

E,=    23   4m(s)A« exp[t(«»+»tAw){»«£,•!/«—<)1 
m—NIi 

where iVAw=l/5 and ^oAw=(So).,„x/Ar. Then, the 
driving term for Ap in Eq. (13) with wave vector 
k,o= (woKoto—"•«.&.)/<; and frequency w.c=wo—w. is 

+ {'f/M)kJ   S   AoA,m(Au)'exviik.,-t-iv.cQ 
m—SIt 

for sufficiently large Ao>. The coupling of Ap with the 
N frequency modes A,m of E, leads to (A?+l) coupled 
equations, whose solution is of the form 

Am(z)= LCexpOjA 
t 

where gi are the eigenvalues. The maximum g, gives 
the reduced Brillouin gain, which can be shown to be 

g«=- (U/i*.o)+C(*.rM.c)2 

+ (w.*yißSAw/32wc*)&l)n,J
lJi1   (16) 

^,V/3^««AW/64,r^.r) fW. 

This gain would remain roughly unchanged for a beam 
of finite cross-section (rf».\). Obviously, for gs < F/v, 
we should take Ao>~r. Then, with a lOO-MW/cm' laser 
beam of d=0.1 cm and 5 = 2X10~8 sec, the Brillouin 
gain at ktx=2/d in 082(7 = 2.2, i3=0.f^Xia-10) is 
gfl^'4.6X 10"'. This gain is small compared with the 
gain gs due to Kerr effect in CS2, but in media with 
small Ferr constants, it can be important. We believe 
that this forward-stimulated Brillouin scattering is 
responsible for the temperature dependence of self- 
focusing in chloroform, CCI4, hexane, and acetone as 
shown in Fig. 2, 

»Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 
(1965). Here, the solution is actually valid only for scattering at 
a sufficiently large angle such that *„/*•»««/««■ 
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Since the total gain for E, is gttgR+gn, the tem- 
perature dependence of g at k,x=2/d is 

dg/dr~-gn/2T+gBdß/ßdT, (17) 

assuming that the temperature dependence of quanti- 
ties other than ti^ and j3 in g can be neglected. Figure 2 
shows dg/dT=0 for chloroform at about 100 MW/cm8. 
With gH=l.S7X10-i and dß/ßdT=omm for chloro- 
form at r=300oK, we should have fß = 2.62Xl(H. 
Equation (16) with 7=1.27, and /3 = 10-10 for chloro- 
form gives gH = l.7XlO~>. In Table I, we calculated g« 
and g., at k,x-2/d for various liquids, using the experi- 
mental gH for chloroform as reference and assuming the 
same dependence of go on y, ß and n (Ref. 30) as in Eq. 
(16). Then, with Eq. (17), one can easily show that 
for CCU, hexane, and acetone, dg/dT>0, and for other 
liquids in the table besides chloroform, dg/dT<0 in 
agreement with our observation. 

Experiments on stimulated Raman scattering in 
liquids show many anomalous effects," such as the 
anomalous gain,'2 spectral broadening,9 class-II anti- 
Stokes radiation,33 etc. Most of the anomalous effects 
can now be explained by self-focusing and self-trapping. 
Nevertheless, the anomalous forward-backward asym- 
metry in the Stokes radiation has not yet received a 
satisfactory explanation, although it is believed that 
this must also be a consequence of self-focusing and 
self-trapping. 

In the self-trapped region essentially all the Stokes 
radiation is generated in the self-trapped filaments. 
Assume that individual filaments are isolated from the 
surrounding, and the Stokes generation in each filament 
can be describe H by the steady-state equations54: 

d\.r/dz=„NliX.r+l), 

dX.B/dz^-cXdN^+l), 

dNi/ds=-<riNlN.f+NlNiBy, (18) 

with iV,f(0)=iVI/}(L) =0, where xV|(2), N,f{z), and 
X,B(Z) are the average photon numbers per unit length 
for laser, forward, and backward Stokes fields, respec- 
tively, and o- is the scattering coeificient. Then, the 
solution of Eq. (18) is 

\,r{L)=X.H{0) 

= expU   (7.Yl(s)rf3 -1 (19) 

"International Critical Tables, National Üesearch Council, 
(McGraw-Hill Book Co., New York, 1930). Handbook o/ C'mis- 
In; edited by N, A. Lange (Handbook Publishers, Inc., bandusky, 
Ohio, 1956). 

" See, (or example, B. P. Stolcheff, Phvs, Letters 7,186 (1963). 
« F. jf. McClung, W. C. Wagner, and D, Werner, Phys. Rev. 

Leiters 15, 96 (1965). 
"E. Garmire, Phvs. Letters 17, 251 (1965), 
" R. W. Hcllwarth, Phvs. Rev. 130, 1850 (1963). 

which shows that the forward-backward symmetry in 
the Stokes generation would persist. 

The observed forward-backward asymmetry suggests 
that the filaments are not isolated. The Stokes radiation 
generated elsewhere in the medium is expected to bdf- 
focus together with the laser beam into the self-trapped 
filaments. Generally, this would increase the rate of 
forward Stokes generation in the filaments. In fact, the 
Stokes generation in the filaments is perhaps a transient 
rather than a steady-state phenomenon. As we men- 
tioned earlier, the Stokes radiation appears as a series 
of sharp pulses. It was suggested that each filament 
lasts not much longer than lO-10 sec.18 The Stokes 
generation in a filament is therefore described by 

{d/dz+n#/cdt} N, = - <r.Vi( .V.r+ NtB), 

{d/dz+n.d/cdf)N.F~aXi(N.r+1), 

(d/dz- nj/cdi) N.„ = -(T.V,(.V.fl+1), (20) 

neglecting other nonlinear processes in the filament. 
The solution of Eq. (20) is diflicult, but it can be shown 
that when the laser peak power is highly depleted in 
the Stokes generation, and A1,^^) is not too much 
larger than N.B{Z = L), where L is the length of the 
filament, the peak intensity of N,B can be many times 
higher than that of A

T
<F.

M
 This would then enhance the 

bac' ard Siokes radiation. Of course, the reverse will 
be true if AT.f (z=0) is sufficiently larger than N,B{Z - L). 
Because of our lack of knowledge on how the self- 
trapped filaments are formed, and because of other 
nonlinear processes in the filaments, it is quite im- 
possible to describe the analytical details of stimulated 
Raman scattering in liquids. However, fn the basis of 
what we have just discussed, we can explain qualita- 
tively the observed forward-backward Stokes asym- 
metry (Fig. 5). After the laser traverses a distance S/ 
(the self-focusing length) in the liquid, filaments start 
to show up. The average number of filaments W(z) 
increases with distance z rapidly, say 

lF(?) = exp[/(s-z/)] 

and the laser input into individual filaments is nearly 
a constant depending only on the properties of the 
liquid. Because of self-rocusing of Siokes radiation, we 
would expect that i\v(s=2o)>Ar,fl(s=So-f-i) for a 
filament initiated at Zo, and that -V^(z=üc) increases 
with 2Q and the laser intensity in the nontrapped region. 
Thus, when the .41 length is increased above Zf, both 
forward and backward Stokes radiation begin to be 
generated in the filaments with extremely high gain 
before saturation in the Stokes generation sets in. This 
appears as a sharp threshold for the stimulated scat- 
tering. After saturation sets in, the backward Stokes 
radiation would become more intense than the forward 
as a result of transients, if N^iz-z^j) is not too much 
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'irger than N,B{S = 3(I+L). AS the cell length is in- 
creased further, more filaments show up, and the in- 
crease of AT

äp(3 = a)) with So enhances the forward 
Stokes generation in these lilamcnts. The Stokes 
intensity in the forward direction now grows faster 
than in the backward direction. Eventually, for a 
sufficiently long cell, the forward Stokes radiation will 
become more intense than the backward Stokes, al- 
though the reverse is true near the threshold. This 
explains the crossover of the forward and the backward 
Stokes curves in Fig, S.35 Since A',f(s —*u) also increase^ 
with the intensity of the laser beam, the crossover 
would appear closer to the threshold length for higher 
laser intensity as WP have observed. A similar argument 
explains the quai Uive behavior of the Stokes curves 
in Figs. 6 and 7, if we remember that the self-focusing 
distance z/ in toluene is nearly proportional to the 
square root of bscr intensity.' In Fig. 6, the nitro- 
benzene focusing cell helps the self-focusing action in 
toluene, enhances slightly the forward Stokes intensity 
with respect to the backward Stokes, and hence brings 
the crossover point closer to threshold. Since most of 
the Stokes amplification comes from the self-trapped 
region,36 the slight change in the threshold would not 
affect greatly the Stokes generation above threshold. 
The two sets of Stokes curves, with and without the 
focusing cell, look very much alike except that one is 
shifted from the other. The Stokes curves in Fig. 7, 
however, seem to indicate the fact that the Stokes 
amplific.tion is greater at k ■.»■er temperature because 
of a smaller Raman lincwidth. 

The sharp rise of the Brillouin curves near Raman 
threshold in Figs. 6 and 7 show that the stimulated 
Brillouin scattering in toluene is also initiated b\ Ü"1 

appearance   of  self-trapped   filaments.   Nevertheless, 

a The qualitative features of Rg. 5 can \i- obiained if we assume 
that, the Stokes radiation generated in earn lilaincnt is appro\i- 
matcd bv 

0.<i<i«. 
A',,(cc-t-/.) = A,.F(^) espigL) 

A'.fl{:E) =A',fl;;«->-i.) exp(j'L;i 

A.,(so-f /.) - A,,.(^ A,«/[A,,fso) +/AS„{««+i) 1 

AWcoi-C, 

A... = (1 /«) la | AVCA'. p (*,) r/A.fl (*,+ i) l) I. 

S'= (l./i..,) InlC/N.uUt+ia 

and iV.^f^o), A'.BCCO+Z.), J,/,  and  C an- numirkal ronstanls 
properly chosen. 

"The iStokes gain in the n"ntrapiK-U region is on!y about 
0.2S enr1 even for a liX) M\V/rm3 taper beam. Sec Kef, 29, 

since the lifetine of tire filaments is short, the Brillouin 
generation in these fila r.ents is greatly reduced. Thus, 
relatively, the Brillouin amplification in the nontrapped 
legion is much more important than in the Stokes case. 
It has a stead) si ale gain of 0.7 cm-1 for a 100 MW/cm8 

laser beam.57 This large gain is presumably responsible 
for the higher brillouin intensity than the Stokes. T! ■ 
Brillouin amplification in the nontrapped region could 
explain the cross over of the two brillouin curves in 
Fig. 6 with and without a focusing cell At suilicientiv 
high laser intensity, the Brillouin amplification in the 
nontrapped region would dominate over the Hriliouin 
generation in the filaments. Since the Brillouin ampli- 
fication depends positively on the isothermal com- 
pressibility ß, which increases sharply with tempera 
tii;e, the Brillouin intensity is expected to be higher 
at higher temperature, just as shown in Fig. 7, although 
the threshold in toluene at higher temperature is higher. 
In hexune, there is no evidence of the presence of 
filaments. The Brillouin curves in Fig, 8 also give no 
indication of sharp threshold. It is believed that in 
hcxane the effect of self-focusing and self-trapping on 
stimulated Brillouin severing should be negligible. 
Then, since the Brillouin amplification increases with 
temperature, the Brillouin radiation should have higher 
intensity and hence a lower apparent threshold at 
higher temperature, as shown in Fig. 8. 

IV. CONCLUSION 

In most organic liquids, the optical Kerr effect is the 
dominant mechanism for self-focusing. However, the 
Kerr effect fails to explain the fact that the self-focusing 
strength increases with temperature in liquids such as 
CCb, hexane and acetone. For a ^-switched laser pulse, 
the electrostrictive contribution to self-focusing is often 
negligible. It is concluded that forward stimulated 
Brillouin scattering should be responsible for the tem- 
perature effect in these liquids. Self-focusing and self- 
trapping affect drastically the stimulated Raman and 
Brillouin scattering in liquids. The increase of number 
of self-trapped filaments with cell length and laser 
Intensity, together with self-focusing and transient 
effects, explains qualitatively the observed forward- 
backward asymmetry ir. the Stokes generation. Other 
qualitative features in the stimulated Raman and 
Brillouin scattering can also be explained. 

R Sec Ref. 29. The acoustic dampini; used to calculate the gain 
is taken from R. Y. Chiao and P. A. Flucry, in Praecdings fl/ Cot- 
jrrcme mi I'hysirs nj Quminm Electronics. I'licrto Rico, 1903. 
edited by V. L Kelicv, d at. (McGfaw-Hfll Book Co., New York. 
1966), p. 241. 
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Self-focusing of an intense light beam * in a nonlinear medium has 

recently attracted much attention. In some liquids» direct time-integrated 

photographs shov that a self-focused beam would break into small-scale 

"filaments" of fev microns in diameter.   Brewer et al found that a 

"filament'* in CS^ has a lifetime less than 10   sec. and a peak intensity 

larger than 10 KW. For theoretical interpretation, more accurate infor- 

aatlon about the duration and the Intensity of a "filament" is or 

prime importance. However, most of the common techniques for subnanosecond 

pulse measurements are not easily applicable to the measurements of 
i 

filament pulses. The combination of a fast diode and a Tektronix 319 

Qscllloscope has a limited time constant of 300 psec or more.  The 

two-photon fluorescence technique requires an intense beam of fairly 

* 7 
large cross-section. The eecond-hirmonic correlation technique needs, 

in addition, a large number of roughly identical pulses. In this letter, 

we would like to. Introduce.the well-known convolution technique for 
...    * ■   . •■ 

subnanosecond pulse measurements. We also present results of the first 

accurate measurements on the duration of filament pulses, 

' If the response of a linear system to t C-function is g(t), then 

the response to an arbitrary function s(t) is given by the convolution 

Integral 

*(t) - £>(T) 8(t-T) dx (1). 

Knowing R(t) and g(t) one can,'in principle, determine s(t) from the 

Integral. This convolution technique is similar to that used in 

spectroscopy to recover he true spectral lineshape from the observed 

spectrum. In our case, the linear system consisted of an ITT FUOlS 



photodiode in connection with a Tektronix 519 ^ illosiopc. k  suitE,.». 

amount of load resistance and capacitance vas inserted in the photodiode 

housing to make the system weakly underdamped. The overall system has 

a time constant of about 1*00 psec. To approximate the fi-functlon, VP 

used the mode-locked pulses from a Nd-glass laser. Two-photon fluorescence 

measurements on these pulses yielded a value of 8 ± 3 psec. for the 

pulse width. The re ^onse function g(t), obtained directly frcn the 

oscilloscope trace of the system response to such a mode-locked pulse, 

is shown in Pig. la. 

All oscilloscope traces were taken at a sweep rate of 2 nsec/div, 

(5 mm/div. on the polaroid pictures). The linearity of the sweep rate 

was calibrated to within 1.5^. The oscilloscope traces were measured 

by a cross-feed manipulator, with an accuracy of 1 y In both coordinates. 

However, the major source'of error in the measurements still came from 

reading the traces from the pictures. The uncertainty was typically 

i0.Q5 to 10.15 mm for different parts of the trace depending on its slope. 

Computer calculation of Eq,. (l) was then performed to match the observed 

response function R(t) by using g(t) of Fig. la and by adjusting the wi-' - 

and the shape of s(t) using a Voigt function. 

We applied this technique to the measurements of "filament" pulsea. 

A beam of 0.75-mm diameter from a single-mode Q-swltched ruby laser was 

•ent through a 33-cm toluene cell. For laser power above the self-focusing 

threshold, photographs of the beam cross-section at the end of the cell 

showed an Intense bright spot of 10 ± 2 y in diameter. Diffracted light 

from the spot was detected by the fast photodiode. Figure lb shows an 

oaollloicopo trace of a typical "filament" pulse obtained at laser power 

close to the self-focusing threshold. We found, from computer calculation 



k 

of Eq. (l), that, the corresponding true pulse sU) has a full widlh at 

half maxima of 190 ± 30 psec, with ar .asymmeüic pulse shape fairly well 

c :termiried as shown in the insert of Fig. lb. At higher input power, the 

oscilloscope trace of a typical "filament" pulse is shown in Pig. 1c. 

We found in this case that s(t) has a full width of 100 ± 60 psec. Here, 

the inaccuracy arose 1 ..inly because of uncertainty in the pulse shape of 

s(t). The same difficulty exists in two-photon fluorescence and second- 

harmonic correlation techniques.  The insert in Fig. 1c shows that sCt) 

assumes very different widths depending on whether it is Gaussian or 

Lorentzian, If the shape of sCt) were known, the accuracy in determining 

the pulse width would be as good as ± 15 psec. The observed "filament" 

pulse width would appear to decrease with Increasing input power if we 

assumed that the pulse shape remained roughly unchanged. The peak powers 

* all "filament" pulses, estimated from the energy content in the pulses, 

were about 30 W withii} a factor of 2. Measurements on "filaments" in 

CS. yielded essentially the same results with peak power at around 8 KW. 

As an independent check on duration and intensity of the "filaments" 

10 
ire used the method suggested by Mayer.   Let Ig^tr^t) Y*. the intensity 

of second harmonics generated from a thin KDP crystal by a nearly parallel 

beam of intensity I (r,t). Then, the energy in the fundamental and the 

second-harmonic pulses are given respectively by 

patt - /IaB^»tJaiWt " c/i6l
z(rft)dAdt 
2 (2) 

where the constant coefficient C it obtained from the known effeclency 

of the second-harmonic generation process. Simultaneous measurements of 

t 



Pw and P2ü) would determine both the pulse width and the peak intensity if 

the functional form of I (r,t) is known. In our experiments, the constant 

C was determined by measuring the second-harmonic generation from a KDP 

crystal using the input laser beam. Applications of the above method 

to the "filament" pulses generally yielded for the pulse width a value 

which is within a fs "-.or of two compared with that obtained from the 

convolution technique. This Tnethod Is Inherently much less accurate 

than the convolution technique. 

This convolution technique can, of course, be applied to measure- 

ments of other subnanosecond pulses, such as stimulated äaman pulses. 

From the experience In our computer calculation, we noticed that rough 

measurements over a few key points (including the two maxima, the oinimuiB 

etc) are usually sufficient to determine the pulse shape and width with 

an accuracy somewhat less than what we stated earlier. This technique is 

especially sensitive tq the variation In the pulse wing. For instance, 

we found that it was very useful to have this technique supplement the 

two-photon fluorescence technique to assure thr*:  the mode-locked pulses 

were "clean" without appreciable ripples at the wings. 
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FIGURE CAPTION 

Flg. 1. Oscilloscope traces of the system response to various light 

pulses. The system was composed of an ITT P^0l8 photodiode in 

öonnection with a Tektronix 519 oscilloscope. 

S) A mode-locked pulse of 8 ± 3 psec in pulse width froir a 

Äd-glass liser. 

b) A "filament" pulse with a pulse width of 190 * 30 psec and an 

Asymmetric pulse shape as shown in the insert. 

c) A "filament" pulse with a pulse width of 100 ± 60 psec. The 

Inaccuracy is due to uncertainty in the pulse shape. The 

Insert shows that the pulse width could he very difficult 

depending on whether the pulse Is Gaussian or Lorentzian. 

She circles indicate results of computer calculation of Eq,,  Cl), 

taking the mode-locked pulse as an ^-function. 
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SMALL-SCALE FILAMENTS IN LIQUIDS AND TRACKS OF MOVING FOCI* 

Michael M. T. Loy and Y. R. Shent 
Physics Department, University of California, Borkeley, California 64720 

(Received 13 March 19G9) 

ExpoHnu-ntal results show ilua Ihr small-scale filaments in liquid, obtained with a 
single-mode laser, are compostd of continuous scries of focal spots.  Many related ob- 
servation«! arc shown to be consistent with the picture of moving foci. 

Experimental observation on self-focusing of 
laser light in liquids has shown that the self-fo- 
cused beam would eventually break into intense 
filaments a few microns in diameter.''2 The ex- 
ifltence of these filaments has recently attracted 
much attention.  They have been attribuieu to 
solf-trapping predicted by Chiao, Garmire, and 
Townes.3 Recent experiments1 on spectral broad- 
ening in filaments, obtained by using an inhomo- 
geneous, multimode laser, seem to support this 
assertion.  Lugovoi and Prokhorov5 however sug- 
gest that in some situations filaments are simply 
tracks of moving foci, in accordance with time 
variation of the input laser intensity.  In this pa- 
per, we would like to present some experimental 
evidence that filaments obtained with a single- 
mode laser are actually composed of a continu- 
CiS time series of focal spots.  We also show 
that many effects inherently related to self-focus- 
ing are consistent with the picture predicted by 
Lugovoi and Prokhorov. 

A single-mode ruby laser, Q switched by cryp- 
tocyanine, was used in the experiments.  The 
bean was passed through a 0.75-mm pinhole be- 
fore propagating into the liquid cell in order to 
assure maximum spatial homogeneity.  A typical 
oscilloscope trace of input pulses is shown in 
Fig. 1(a) together with the Fabry-Perot pattern 
in Fig. 1(b).  "Fllamr.nts" or moving focal spots 
were observed by focusing a camera at the end 
of the cell.  In most cases only one "filament" ap- 
peared (Fig. 1(c)]; occasionally, there were two, 
when the input laser power was exceptionally 
high.  This is in clear contrast to the results ob- 
tained with a multimode laser, where tens or 
even hundreds of filaments are frequently ob- 
served on each picture.4 As the laser power was 
increased from below to above the self-focusing 
threshold, the photograph first showed a bright 
spot of about 50 M in diameter, which gradually 
became more intense and shrank to a more or 
less limiting "filament" size (10i 2 ;. in diameter 
In toluene and 511 M in CSJ.  The pulse emitted 
from the filament was detected by an ITT F4018 
photodiode in combination with a Tektronix Model 

No. 519 oscilloscope.  A 1 -mm disk was inserted 
somewhere in front of the photodiode to block ofi 
the background of non-self-focused laser light.1 

The pulse duration was then measured by the cor- 
volution technique.8 The results on toluene 
showed that with increasing input laser power, 
as the bright spot shrank from 50 ^ to the limit- 
ing 10-<i "filament" size, the pulse duration 
changed from 1 nscc to 200 pscc, and then as 
the "filament" size remained unchanged, the 
pulse duration continued to shorten to less than 
100 psec.  While the pulse became shorter, the 
energy content in the pulse decreased according- 
ly, but the peak intensity in the limiting "fila - 
ment" remained roughly constant at 30 GW/cm2. 
Spectral analysis with spectograph and Fabry- 
Perot on the "filament" pulses yielded a line- 
width of less than 1 cm-1. 

These results are consistent with the picture 
of "füaments" formed by moving foci.  On the 
other hand, it would be rather difficult to ex- 

1 

FIO. I.   (a) A typical osclllo.seopc trace (5 nsoc/div) 
of an input laser pulse,   (b) A Fabrj-Perot paltern 
(1.25-cm spacing between plates) of an input laser 
pulse,   (c) A typical "filament" In toluene. The pic- 
ture was taken by focusing the camera at the ^nd of 
the cell with a 125* mugnl'ieatlon. 

t 
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pjain how a self "trapped filament of surii high in- 
tensity could last for more than a few millime- 
ters without showing appreciable spectral bruad- 
ening.7 A way to help disünguish the two cased 
is to focus the camera Inside rather than at the 
enu of the liquid cell.   If the "filament" were in- 
deed a self-trapped filament which terminates at 
the end of the cell, we would expect to see a 
blurred dofocused image of the filament; other- 
wise, as the laser power is increased above the 
self-focusing threshold, we should always see a 
clear image of the focal spot extended gradually 
further inside the cell.  In our experiments, we 
took simultaneous photographs with two cameras, 
one focused at the end of the cell and the other 
up to a few centimeters inside the cell.   For la- 
ser power above the self-focusing threshold, we 
found on both photographs at equivalent positions 
a bright focal spot of about the same size (1012 
it in toluene), consistent with the picture of mov- 
ing foci.  The focal spot appeared deeper inside 
the cell for higher laser power, but not .up to the 
point at which the peak of the laser pulse would 
self-focus, presumably because stimulated back- 
ward Raman and Brillouin scattering effectively 
terminated self-focusing through depletion of the 
incoming laser power (see explanation below). 
One might think that these results could also be 
interpreted as a self-trapped filament moving 
along a line.  We rule out such a possibility on 
the following grounds:   (1) Calculation8 shows 
that a trapped filament of 30-GW/cm2 peak inten- 
sity without appreciable spectral broadening 
should be depleted by Raman scattering in less 
than a few millimeters.   (2) Focal spots were ob- 
served within 1 cm of the point at which the peak 
of the input pulse should self-focus, when the in- 
put peak power was not too far above the self-fo- 
cusing threshold.  This showed that the trapped 
filaments, if existing, could not be longer than 1 
or possibly 0.5 cm.  The limit was set by the ex- 
perimental inaccuracy in determing the self-fo- 
cusing threshold, assuming the worst case that 
self-focusing was not terminated by stimulated 
scattering.  Physical results would of course be 
essentially the same, whether it is a moving fo- 
cal spot of finite focal region or a moving, short, 
trapped filament.  We also focused the camera 
up to a few millimeters outside the cell.  The ob- 
served image was almost an order of magnitude 
smaller than one would expect from diffraction 
of a self-trapped filament, indicating some focus- 
ing action of the beam extended outside the cell. 

Theoretically, knowing the time variation of 

the input laser power, we can calculate how the 
focal spot moves along the line.  We assume that 
for a certain laser power P the focal spot ap- 
pears ai the solf-focusinc distance' 

Z=K/[(P/l'   ),/2-l], J cr (1) 

cr is the critical power for self-frap- where Pc 

ping3 and /f is a constant depending on the geo- 
metric factors of the input beam and the nonlin- 
ear refractive index of the medium.   By measur- 
ing the threshold power for self- focusing at vari- 
ous cell lengths we can find K and Pcr.   The mo- 
tion of the focal spot can then be determined 
from Eq. (1), knowing the time variation of the 
input laser power and taking into account the fact 
that light propagates with finite velocity.   Figure 
2 shows the position of the focal spot in toluene 

120 I       I 

P„= 30kilpwoff» 

40 

20 

7.25 P.. ^ 

^ 

N^ - 
i? p 

 18 Pt, 

J_ _L I I _L 
0 3 6 9 

At, nsec 
FIG. 2.  Theoretical curves indicating the position of 

the focal spot Inside toluene as a function of relative 
time At for several peak powers of a Gaussian laser 
pulse with 7.6-RSCC full width at half-maximum.  Here 
^ = 0 refers to the instant the first focal spot is 
formed.   Curves are calculated using Eq, (1) and ex- 
perimental values of self-focusing threshold at differ- 
ent cell lengths.  Note that since light travels with fi- 
nite velocity, py.ik of the laser pulse would focus earl- 
ier with shorter self-focusing distances than the lead- 
ing part of the pulse focusing with longer self-focusing 
distances.  This also explain;; why, at a given A/, two 
focal distances can be obtained from Eq, (1). 
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a« a function of time fur a set of input Gaussian 
pulses with various peak powers,10 These pulses 
were chosen to match approximately the observed 
laser pulses in the experiments.   However, 
there could be some residual spatial inhomogene- 
ity in our laser beams; so the curves in Fit;. 2 
only describe approximately the actual, experi- 
ments. 

One consequence is Immediately obvious from 
the picture ol moving foci shown in Fig, 2.   For 
a given cell length, the focal spot would spend 
more time at the end of the cell when the input la- 
ser power is just at the self-focusing threshold 
than in the case where the input power is consid- 
erably above the self-focusing threshold.  In the 
former case, we would expect to sec a brighter 
focal spot at the end of the cell.  This is ir fact 
what was observed.   We noticed in addition, with 
the aid of motion pictures, that whenever the in- 
put power was near the self-focusing threshold, 
there appeared a bubble ot about 100-M diam out 
of the focal region at the end of the cell.   Rough 
estimate shows that while an intense field is nec- 
essary to initiate the bubble, an energy of a few 
ergs is needed to create the bubble.  This can 
therefore happen only if the focal spot stays at a 
local 10-ft region for more than 10 psec.   Most 
of our experiments were done on toluene with a 
cell length of 33 cm and an input laser pulse of 
peak power between 6Pcr and 12Pcr,   From Fig. 
2, we expect that the focal spot would first ap- 
pear in the liquid medium at the end of the cell 
and then move inward,   For higher input power, 
smaller pulst wid^h, and longer cells the focal 
spot could first appear inside the cell and then 
split into two focal spots, one moving towards 
the front and the other towards the end of the cell. 
This would happen only at P> 100 PCT for the 33- 
cm toluene cell we used.  Then the focal spot 
could also move with a speed greater than the ve- 
locity of light. 

Figure 2 shows that for input power larger 
than the self-focusing threshold, if self-focusing 
were not terminated by other processes, then 
the duration of a "filament" pulse would be much 
longer (>1 nsec for P >7Pcr) than what was ob- 
served (-150 psec) and would increase with in- 
crease of input power, opposite to what was ob- 
served.  However, various stimulated scattering 
processes can be initiated at the focal region. 
The backward stimulated Raman and Brillouin 
scattering would deplete effectively the incoming 
laser power" and consequently terminate the "fil- 
ament" by depleting the later part of the input la- 

ser pulse to a level below the self-focusing thres- 
hold.   The self-focused light diffracted from the 
focal spotb could also be depleted by forward R;- 
man scattering,  Because of longer interacliori 
length, depletion would of course be more appri. - 
ciablc for focal spots deep inside the cell.   In all 
respects, the focal spots near the end of the cell 
should be less affected by stimp'atcd scattering. 
Photographs indeed showed that focal spots in- 
side the cell were much less intense than those 
close to the end of the cell.   From Fig. 2, we 
conclude that to yield the observed "filament" 
pulse duration, the major part of the pulse mus; 
be emitted from a short section of the "filament" 
presumably within l cm towards the end of the 
cell.  This also explains why the pulses were 
shorter and weaker for higher input power. 

In conclusion, we believe that under conditions 
similar to ours, the so-called "filaments" arc uc ■ 
tually the result of moving foci.  The size of a 
"filament" should then be the size of the focal 
spot.  Machine calculations,1* with a simple mod- 
el of saturable-refractive Index, indicate that a 
self-focused beam would defocus and then refo- 
cus again.  If the laser power is being depicted 
by stimulated scattering in the focusing process, 
then the self-focused beam after defocusing 
would not have enough self-focusing strength to 
refocus.   For an input laser pulse vhlch Is non- 
homogeneous and multimoded, self-trapped fila- 
ments may still exist4 because of very different 
propagation conditions.  However, a question ytt 
to be answered is why the size of the observed 
"filaments" in a given liquid seems to remain 
rrughly constant Irrespective of the Input pulses. 

We are Indebted to Dr. P. L. Kelly for numer- 
ous discussions and valuable comments on the 
manuscript.  We would also like to thank Profes- 
sor H, Y. Chiao and Professor C. H, Towues for 
helpful discussions. 
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SIMPLE MODrJL FOE C"MICONDUCTOR-METAL TRANSITIONS: 
SmD8 AND TRANSITION-METAL OXIDES 

L. M. Falicov* 
Department of Physics, University of California, Berkeley, California 94720 

and 

J. C. Kimballt 
Department of Physics, and The James Franck Institute, University of Chicago, Chicago, FlUnois 60637 

(Received 12 March 1969) 

We propose a simple model for a semlconductor-mctal transition, based on the exis- 
tence of both localized (ionic) and band (H'och) states. It differs from other theories la 
that we assume tho one-electron states to be essentially unchanged by the transition. 
The electron-hole interaction is responsible for the anoraames temperature dependeace 
of the number of conduction electrons. For interactions larger than a critical value, a 
first-order semiconductor-metal phase transition takes i;lacc. 

Many substances, including SmBc
l and a num- 

ber of transition-metal oxides,2 exhibit semicon- 
ductor-metai transitions.'  The transitions are 
in many cases first-order phase transitions (e.g., 
in Va03); however, they can also result from a 
gradual but anomalously large increase in con- 
ductivity over a range of temperatures (e.g., In 
SmBg and Ti^).  In addition, measurements of 
large magnetic susceptibilities with anomalous 
temperature dependences suggest that in many of 
these materials localized magnetic muments ex- 
ist and that they are intimately connected with 
the transition.  As an examu e, it has been hy- 
pothesized1 that in SmB6 the conduction electrons 
And the localized moments are produced sinui- 
taneously by the promotion of a single localized 
electron from tlie spherically symmetric Sm++ 

ion (J=0) into a conduction band.   The Sm+++ Ion 
left behind (J=|) acts as a localized moment. 

We preserf here a simple theory of the semi- 
conductor-metal transit'on basco on a mode! hav- 
ing both localized and itinerant intcrrcting quasi- 
particle states.   The relevant single-electron 
states consist of (a) b   ids of extended Blocn func- 

tions and (b) a set of localized states centered at 
the sites of the metallic ions in the crystal.  As 
r-0 the localized states are lower in energy 
than the band states and axe fully c   ;upied by 
electrons.  Therefore the quatiparticle excita- 
tions are either localized holes or itinerant elec- 
trons.  In the language of second quantization and 
in the spirit of th5 Landau theo-y of Fermi liq- 
uids, we write the one-particle terms as 

ffn= Ef (k)a ft ts £   +SE6   tft- 0    Y   v      fkff   i/kcr •-   - 
vka to 

to   to 
(1) 

where ov\ia^ creates an electron in state k, band 
v. with spin a, and 6,a* creates a hole with spin 
<7 at site i.  Tne energies €,,(k) and E are positive 
definite and such that 

A imin{E + c (k)l>0 
v 

(2) 

is the energy gap for the formation of an elec- 
tron-hoic pair. We further assume that the qua- 
siparticle interaction is screened, and its range 
flhort enough so that only intra-atomic terms 
need be considered.  In this case the interaction 

9S7 



UV il 4'AL    k 1   V I I   i\ 

APPENDIX     VI 

V 01.1' Ml.    1 8 u,   N Ü M B K K I ü   A (> IU L   I •> o o 

Tunable Far-Ljfrared Radiation Generated from the Difference 
Frequency between Two Ruby Lasers 

D. W. FA« its* 
Depitttmcitl aj rhyiia, l'»ht'sily vj California, Berkeley, Califvmia 9-t7J0 

ANP 

K    A    (^ilKl.V .t  P.  I..  KitllAKDS, AND Y. R. Sllt.N*{ 

Inur^anii J/.j/iTi'.i/i f neiircli Diiitton, Jji^rcmt Raiialiuii tjibewtiirjf, 
Defarliiioil 0} PhyiL >  Vmttnity 1,/ Calijuruia, Btrkc'ty, Cati/t>niia 9-1720 

(.Rtceiveü Ä) Drtemlwr 1968) 

Fa» infrared rsdtatiun giiu-raiiil (rum the difference (rfquency lietwctn two icinjwrature luned rulij 
Isnirs has been ulnecvcJ nvet tj«; (ruriueno rangi ''»ni 12 ID 8 1 cm'1. Lithium niultale and i|uarl?. were 
UM.ii as Riiitng cry^iaU TJie ewivcriiun eH'iciciic)' »as nwasurol as a function uf angle around the phasv- 
nutchrd tliuclii.ii. The exjiected s[K'ctral content and frvijuency of the far infrared radiation has tjecn vcri- 
fiid using a far-inhaml Fabry-Perot interferometer 

S(.M)N afler optical scctind-harntunk gcneratiüii was 
discovered, it was suggestt'd b\- several persons1 

that difference frequency generation in a nonlinear 
crystal using two ttmperaturetuncd lasers would pro- 
vide a lunabi!. source of coherent far infrared radiation. 
In this paper we describe the first observation of this 
tunable narrow-ban J far-infrared radiation. Fixed- 
frequency far-infrared radiation has been reported by 
two groups: Zcrnikr and Herman1 detected broadband 
radiation near 100 tin"' resulting fron? the nii\ing 
of an iiiil.uuwn number of niode> from a pulsed neo- 
dyntium■glass laser. Wtjima and Inoue' used the Ry 
and A'; lines of a single rub)' laser to gentrate a fhed 
difference frequency v—2K) cm-1. In neither case was a 
spectral analysis -frortcd. Wc have used two, simul- 
taneous!) (J-switchcd, temperature-tuned ruby lasers to 
generate radiation between 1.2 and 8.1 cm"'. By using 
sun.-frequency generation to normalize the pulse-to- 
pulse variations, we have measured the far-infrared 
frequency directly and found it to be in agreement with 
the known temperature coefficient* of the ruby-laser 
frequency. We have also measured the variation of the 
far-infrated power with orientation of the LiNbOj 
crystal near the phase-matching angle. Difference-fre- 
quency generation was observed in quartz and LiNbOj 
and a comparison is made of their electro-oplicai 
coefficients as calculated from their relative efficiencies. 

Consider two cylindrically symmetric beams of finite 
transverse radius a traversing a crystal of length /. The 

• Restarch supported bv the OfScc of Naval Research under 
Contract No. Non?-36S6(J2). 

1 Present address: Tne Clarendon Laboratory, Oxford, England. 
A. P Sloan Research lellow. 

»See, for ewimule. D. C. Laine. Nature 191, 795 (1961); J. R. 
FonUna and R. H. Pantell, Proc. IRE 50, J796 (1962). 

* F. Zernike, Jr., and P. R. Herman, Phy». Rev. Letters IS, 999 
(19M). 

•T. Yaiima and K. Inoue, Phy*. Letters 26A, 281 (1968); 
IEEE J. Quantum Electron, (to be published). 
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field intensities of the beams (1= 1, 2) are 

EiM - HSi e.\p(i>.s- J«./)+c.cJ. 

A nonlinear polarization of frequency u—U|—wt will be 
produced in the cylinder of length / and radius a by the 
interaction of the two electric fields with the medium. 

P(r>/) = i(XfI,5lÄ3V
(t+Ji,'-",+ c.c.). 

where i| —i:=i+;lit= (UI/C);I+A4 and where « is the 
index of refraction at the difference frequency u. By 
integrating over the contributions of the cylindrical 
polarization wave in the far-field approximation, we 
obtain the total far-infrared power 11' collected in the 
detection system. We neglect ih effsct of the boundary 
by assuming that the detector is buried in the dielectric 
medium. 

W =— !x«>|'|5,|s|5,I3r(irc:)» 

/-♦- rsin,-fr2y1(f)-f 

where IJ = J£/{ I+Ak/k—cos^), f = ita sin*, ^ is the angle 
between the incoming bear. and the gene-ated radia- 
tion, and *„, is the ma\imum angle collected in the 
detection system. 

Equation (1) is valid for single-mode lasers A beam 
with divergence O and area A contains AX^AO/X* 

modes. Under the condition of small diticrcnte fre- 
quencies and limited collcciion angle (which existed in 
our experiments), the measured signal arises only from 
each mode of one laser interacting with one tnode from 
the other laser. Therefore, the delected power is reduced 
by a factor of l/.V from that predicted by Eq. (I). 

In our experiment, the two lasers were simultaneously 
Q-switched by using the same rotating mirror in both 
optical cavities.* The mode purity was o strolled Hy 
using a resonant reflector as the output mirror and by 

1 O. W. Farics and V. R. Shen (to be imblishcd). 
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using a saturablc dyeccll (Kastman 102.?0). One of the 
lasers was cooled by circulating ethyl alcohol at 
r> —40oC and the oilier was operated at room ttm- 
peralure. The two laser beams were made coincident 
and accurately parallel (within 1 min of arc) by careful 
adjustment of a beam splitter. No focusing lens was 
used. The polarizations of the lasers were made accu- 
rately perpendicular (vertical and horizontal) by the 
use of external polarizers. Each laser typically delivers 
a power of 1 M W over an area of 0.2 cm- with an angular 
divergence of 1.5 inrad and a pulse duration of 3X10 s 

sec. The power is usually distributed into two frequency 
modes separated by 0.2 cm-1. 

The far-infrared signal was detected using a crystal 
of w-typc InSb (Putley6 detector) at r=1.30K.'in a 
magnetic field of 5500Oe. It was biased with a constant 
voltage of 0.25 V and the current was measured using 
an operational amplifier with a feedback resistor 
Rr~205 kfi. The response time of this system is 2^S. 
The sensitivity of the detector was measured using a 
blackhody at 200oC and a filter passing 0 50 cm-1. 
This showed the average noise equivalent power in a 
5X10ä-Hz bandwidth to be lfrs W. However, since the 
sensitivity is certainly not uniform in this energy 
region* and since there are inevitable local system 
resonances at these long wavelengths, the absolute 
values of the infrared power may be in error by more 
than an order of magnitude. For this reason, emphasis 
was on relative powers in our measurements. 

The nonlinear crystal was mounted on a rotatable 
table directly in front of the light pipe leading to the 
detector. A black polyethylene filter was used to reject 
unwanted radiation. 

The infrared power generated is proportional to the 
integrated overlap in space and time of the two laser 
beams. Since this overlap varies from shot to shot, it 
is desirable to obtain an independent measurement of 
it for use as normalization.7 This was done by monitor- 
ing the intensity of the sum frequency generated in a 
crystal of potassium dihydrogen phosphate (KDf). 
The discrimination of the sum fvequency from the 
second-harmonic signal was achieved by using the 
scheme of Maier el a/.' and A'mstrong.' A discrimina- 
tion factor better than 50 against second-harmonic 
radiation was obtained. Because of the small k vector 
of the far-infrared radiation, fluctuations in beam align- 
ment and angular-rnode distribution are expected to be 
more critical for difference-frequency than for sum- 
frequency generation. The far-snfra.ed difference fre- 
quency signals were found to be proportional to the 
sum-frequency signal within a factor of 2. 

•E. H. futley und D. H. Martin, in Sfrxirascopic Ttchniiiues, 
edited by Ü. H. Martin (North Hüllund Publishing Co., Amster- 
dam, 1967), p. 113. 

1J. Ducuing and N. Bloembcrgcn, Pliys. Rev. 133, AlW 
(1964). 

•M. Maier, W Kaiser, and J. A. Gierdmain?, Phys. Rtv. 
Letters 17, 127S (1966). 

* J. A. Armstrong, Appl. Pbys. Letters 10, 16 (1967). 
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Fie. 1. Typical oscilloscope traces showing correlation between 
the time overlap of laser pulses and the strength of sum- ami 
diflercncr-freqnenc) signals. The laier signals are displayed on a 
single trace (a) at a sweep rate of SO nsec, div, with the cook'i 
laser signal delayed by 12j nsec. Difference-frequency signals 'I, 
and sum-ftequency signals (c) arc displayed at a sweep rate o. 
S^iscc/div. The pulse widths of (b) and (c) are charactcrislic oi 
the time r.jponsc of the detectors used. When there is consideraliK 
time overlap (as on the right), the stmi- and dilTerente-frequencj 
signals are clearly much larger. 

Typical infrared signals are shown in Fig. 1, where 
they are compared with the sum-frequency signal and 
the signals from the individual lasers. Satisfacton 
correlation is observed between the diiTerence-frequenc\ 
signal, the sum-frequency signal, and the laser timing. 

The variation of the far-infrared power as the 1.5-cm 
LiNbOa crystal is rotated through the phase-matched 
direction is shown in Fig. 2. The experimental point- 
are compared with the theoretical curve plotted assum- 
ing that the output of each laser is split equally between 
two frequencies separated by 0.2 cm-1. The position of 
the peak in Fig. 2 agrees within experimental accuracv 
v/ith the phase-matching angle of 9.5° from the optic 
i..xis computed using n,= 2.189 and «0=2.273 (at tlu 
laser frequencies)10 and «0=6.55 (at 8.1 cm-')." 

o ♦O.J« 

Angular deviation from phos« matching ongl« 

Fic. 2. Variation of the power of the difference-frequency signal 
as a function of the angular deviation from the phase-matcluv 
»ngle. The angles refer to the inside of the l.S-cm Li\l)0. 
crystal used. 

" G. D. Boyd, ». C. Miller, K. Nassau, W. L. Bond, and A 
Savage, Appl. Phya. Letters 5, 234 (1964). 

u J. D. Axe and D. F. CKane, Appl. Phys. Letters 9,58 (1906) 
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The measured far-infrared power from a 0.017-cm 
LiNbOj crystal at the phase-matching pedk is about 
1 mW. This is in order-of-magnitude agreement with 
the value calculated from Eq. (1) with a collection 
half-angle of 30°. For the 1.5-cm crystal, the measured 
peak power is 2X I0~} W, which is two orders of magni- 
tude lower than what is expected. This discrepancy is 
most likely clue to crystal in homogeneity," which would 
reduce the efficiency of optical mixing in long crystals. 
All the long crysta': we used su/Tered damage after 
several hundred shots. The validity of quantitative 
comparisons with Eq. (1) is also limited by the un- 
realistic boundary conditions used in its derivation. 
Neglected effects include radiation from the edges of the 
crystal and multiple reflections at the faces. 

The far-infrared wavelength was measured using a 
Fabry-Perot interferometer with electroformed metal 
mesh mirrors.13 Tj-pical transmission curves are shown 
in Fig, 3. The solid curve is obtained from the Airy 
formula by integrating over the finite collection angle 
so as to fit the decrease in Q with increasing order 
number. The wavelengths used were $% [Fig. 3(a)3 
and 5% £Fig. 3(

1
J)3 smaller than those predicted from 

the known temperature dependence of the ruby-laser 
frequency. The Tmesse was computed from the geometry 
of the mesh. The fit shows unambiguously that we are 
observing a difference frequency with a bandwidth less 
than the ~1 cm~' resolution of our int'-rferometer. The 
linewidth of the two frequency modes (separated by 
0.2 cm"1) from each laser is less than 0.02 cm-1, leading 
to a predicted linewidth of less than 0.04 cmM for each 
of the three far-infrared frequencies produced. 

We also compare ' the far-infrared power generated 
from a 0.047-cmthick crysta! of LiNbOj with that from 
a 1-cm thick crystal of quartz. Using Eq. (1), the ratio 
of the electro-optic coefficients rj;(L»NbOj)/rS2(quartz) 
is estimated to be 8.5. According to other measure- 

i A. Aähkin, G. D. Boyd, 1. M. Dziedzic, R. G. Smi:h. A. A 
Balinun, J. J. Levinstein, and K. Nassau, Appl. Phys. Letters 9, 
72 (1966). 

u R. Llrich, K. F. Renk, and L. Cenzei, IEEE Trans. Micro- 
wave Theory Tech. MTT-U. J63 (1963). 
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Fie. 3. Fabry-Perot scan of the difference-frequency output. 
The upper scan (a) i» fcr a temperature difference Ar=60*C of 
the two lasers. For the lower scan (b) Ar=47<,C. The theoretical 
curves are Airy functions calculated ftom the geometrical prop- 
erties of the Fabry-Perot reflectors and averaged to account for 
the 30° coüection half-angle. 

ments," the ratio is 3.7. Because of the uncertainties in 
our measurement, this agreement must be considered 
satisfactory. 

The tuning range was limited to frequencies less than 
8.1 cm-' by the cooling system used. This range could 
be extended to ~20 cm"1 by using liquiu nitrogen as a 
coolant. It the warmer laser were operated on the A» 
line, then the range could be extended to ~-50 cm-1. 
The use of a tunable dye laser, stimulated Reman, 
radiation, or parametric sources would, of course, extend 
this range throughout the infrared. 

We would like to thank D. Woody for computing the 
theoretical interferometer curves and Dr. E. Washwell 
for furnishing samples of LiNbOj. 

" A. /ariv, Quanlum Eleclrcnics (Wiley-Intersdcnce, Inc., New 
York, 1967), p. 351. 
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THEORY OF SELF-TRAPPED FILAMENTS OF LIGHT 

Y. R. Shen,*t M. Y. Au Yang,$ and Marvin L. Cohentt 
Department of Physics, Ciiverslty of California, Berkeley, California 

(Received 30 August 1967) 

We present a calculation modeled after the theory of phase transitions to explain the 
observations on self-trapped filaments of laser light in liquids. The resulting state is 
shown to be similar to the Abrikosov vortex state in superconductors. 

Self-focusing and self-trapping of intense 
light beams have recently become one of the 
most important and interesting subjects in non- 
linear optics. While self-focusing as a result 
of intensity-dependent changes of the refrac- 
tive index is now more or less understood both 
theoretically1 and experimentally(

a the forma- 
tion of intense filaments arising from self-trap- 
ping* still remains a mystery. It is believed 
that the filament formation is also a consequence 
of the change of refractive index with intensi- 
ty.* However, experimental results indicate 
that the change in the refractive index of a fil- 
ament, calculated from the observed intensi- 
ty in the filament under Kerr effect assumptions, 
is not sufficient to account for the observed 
filament size.4 In addition, a number of other 
experimental facts have received no satisfac- 
tory explanation. 

In this paper, we present a calculation which 
enables us to explain most of the experimental 
observations on self-trapped filaments. The 
calculation is based on the assumption of a field- 
induced phase transition in the medium and is 
similar to that of vortex formation in Type-II 
superconductors.  Preliminary results of the 
calculation yield the following predictions: 
(1) The splitting uf an intense beam into small- 
scale circular filaments is energetically favor- 
able; (2) aside from fluctuations, all filaments 
have the same size and the same power densi- 
ty; (3) the filament size and the power contained 

in each filament are characteristics of the me- 
dium independent of the input beam intensity. 
In the calculation, we will assume that a crit- 
ical field exists and that aside from the inten- 
sity-dependent dielectric constant e(w) = e^u) 
+ e2{a))l£(a))la, to produce this field, other non- 
linear optical processes can be neglected be- 
fore the filaments are formed. 

Grob and Wagner* have also suggested the 
analog of vortex lines in superconductors to 
the filaments in this problem. Howe\ er, they 
assume that the filament formation is a result 
of coupling between light fields and density fluc- 
tuations in the medium. Their results are es- 
sentially the same as those obtained by Chiao, 
Gamire, and Townes.* 

Our calculation is modeled after the theory 
of phase transitions and the theory of vortex 
formation in superconductivity.* We acäume 
that the molecules in a liquid are correlated, 
and at temperature T, the state of the liquid 
can be described by a dielectric function.  We 
further assume that in the presence of an in- 
tense optical field greater than the critical field 
Ec, the molecular interactions in the liquid 
can be changed, and the system can experience 
a phase transition.   (Field-induced phase tran- 
sitions have been observed in ferroelectrics.) 

We sLall begin by discussing the energy of 
an arbitrary two-phase configuration of the 
liquid and then go on to discuss a liquid with 
trapped lifgrt filaments. In both cases we as- 
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sume that the system can exist in two states 
described by the dielectric constants €H and 
€..  As will be clearer later, the states a and 
b will be analogous to the superconducting and 
normal states, respectively.  The energy dif- 
ference between these states (or the condensa- 
tion energy) is Ac l£c! '/Sir, where te - Eft-ec. 
We now consider the case of a light beam of 
uniform intensity c\E0\2/8ir propagating into 
the liquid medium where both a and    phases 
exist simultaneously.  After the light beam has 
traveled some distance along the z direction, 
the field distribution in the beam should become 
stable and invariant with respect to z.  We can 
then conclude that from the minimization of 
the Gibbs free energy, the fields will concen- 
trate in the high-dielectric-constant b region 
with field penetration of distance >. ii:to the a 
region.   For simplicity, we assume that the 
field Efr is constant in the h region and the A 
penetration region.7 The free energy of the 
system is (assuming a dispersionless medium), 

F~F0+iBnri\Ab(Ec^+lEbl*e.b0 + i\Ebl<eb2) 

+ iyE:
3Ac+l£&l

2A€)}, (1) 

with 

<*b
+VlEb l»=AI£0l2, 

where F0 is the free energy arising from all 
sources other than those we are considering, 
Aff and A are the cross-sectional areas of the 
b region and of the beam, respectively, lb is 
the perimeter length of the e& region, i is the 
characteristic length over which the transition 
from ca to €b takes place,7 and it is assumed 
for simplicity that ^2* €&2~ c2'  Comparison 
of Eq. (1) with the free energy for a uniphase 
in A shows that a two-phase system ie ener- 
getically favorable if |£QI >EC and A>^. The 
medium wants to form new walls between the 
phases.  From arguments similar to those used 
to describe the formation of vortex lines in 
superconductivity,' it is energetically favor- 
able to form circular filaments of radius £ 
(field filaments of radius A). 

For the case of n filaments, the free ener- 
gy of the system can be written as 

•-F  +(8ff)-1{n)rA2(l£   i 
0 b a0   • 

+ nff?*(l£tl
2A€+£ »At)}, 

o c (2) 
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with the constraint «ffX2iii& \2=A \KQ\2, where 
£ft is the field in the filament.  For a given 
!£0I2, the above free energy can be minimized 
to yield the number of filaments.  Thus, 8£/ 
Bn = 0. and we find that 

« - 
A\En\*e,l,a 

TTA^E (2A€)l/2' 
c 

(3) 

Note that the minimum « we can have is at EQ 

= EC.   From Eq. (3), the field intensity in each 
filament can be obtained: 

c-IPI2    ((£  (2Af)1/2 

6 c 
Bn 87rAc2

1/2     ' 
(4) 

which is independent of the applied field if A 
is only dependent on the characteristics of the 
medium.  The total power contained in each 
filament is a constant: 

cHE (2Ae),/2 

Q=     si?75     • (5) 

The above equations relate the field in a fil- 
ament to the size of the filament, and these 
can be solved if the quantity ^(Ae)1'* is known. 
This quantity is a characteristic of the phase 
transition in the medium. It is possible to ob- 
tain a numerical estimate of ?£c(A€)l/* by mak- 
ing the simplifying assumption that the phase 
transition we are considering is a second-or- 
der phase transition.  This allows the use of 
the Landau-Ginzburg equation,8 

{N/2m)[{tS/i)V -{e*/c)A]2ip + a* + 01 * 12* = 0,     (6) 

where 4 is a complex, position-dependent or- 
der parameter describing the additional induced 
correlated polarization responsible for the Ac 
change.  We assume that the induced polariza- 
tion arises from electronic interactions and 
N, m, and e* refer to the density, mass, and 
effective charge of the electron (assuming one 
interacting electron per molecule). In deriv- 
ing Eq. (2) we assume a square well approxi- 
mation for * and £ö; it'=lforr>4, ^<|,sand 
£=£j for r <A, where r is the radial position 
measured from the center of the filament. 

From the equilibrium condition in the absence 
of the fields, we find* that 

a = -ß=-E *Ae/4)r. c (7) 

If the fields are independent of z, then i is al- 
so independent of z, and both the fields and 
ip can be taken to have cylindrical symmetry. 

HZ533 2-4 
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We can use Eq. (6) to give the characteristic 
Taxation length | to describe the variation 

of $ from zero at the center of the filament 
to unity outside: 

c (8) 

For CSj, N* 1022 cm-» and we find that |£c(Ae)l/2 

= 8.7 x 10""* esu.  Using this value and the ex- 
perimental values A = 2 M and c2= l.BxlO-11 

esu in Eqs. (4) and (5) gives the field intensi- 
ty c\Eb la/8t« 1.8x io» w/cm", and the power 
contained in each filament, Q = 220 W. These 
estimates agree well with experiment.* To 
find i, Ec, and Ac separately, a microscopic 
calculation which considers the molecular in- 
teractions in detail is necessary. 

It is possible to compute Ac if X is known 
by using the Maxwell wave equation 

1 r     z    v   '     l 60 

-Ae(l*l»)Av+€2l£l2]}£(r) = 0, (9) 

where (N'l2)^v represents the average value of 
l*(r)l2. If we made the simplification (li(r)i2)Av 

= 40
2forr<«, <U(r)l2>Av=lforr>4. and £(r) 

=£^ for r<i (since the macroscopic field will 
not vary appreciably over a dimension less 
than a wavelength), 

V^XSo-^o' *^EbW. (10) 

For €0»€t\E\ CjI.EI2 can be neglected in Eqs. 
(9) and (10) in first order. The solution of £q. 
(9) for r>4 is the zeroth-order modified Bes- 
sel function K0ir/\), with a characteristic de- 
cay length 

A = (c/w)[Ac(l-*0
2)]-1/2. (11) 

For CSj, A = 2 fi, and at ruby laser frequency 
we estimate that typically Ac >3x 10~s, which 
is much larger than €2l£& I2(«=2xl0-*). We 
expect that typical values should be Ae - 10~2, 
£c-2x 10* eau, and |-0.4 ji.  A more rigor- 
ous treatment of this problem should account 
for the variation of E and ip across the phase 
boundary by solving the coupled equations (6) 
and (9). This should yield a functional repre- 
sentation for the n stable filaments as obtained 
from energy considerations. This would be 
equivalent to the Abrikosov calculation for vor- 
tex lines in superconductors.* 

In the above discussion, the dynamic process 
to reach the final stable field distribution in 

the beam has not been considered. It is clear- 
ly not important as far as the stable configu- 
uration of filaments is concerned.  This is anal- 
ogous to the growing of a crystal, where we 
are only interested in the final crystal struc- 
ture and not in the dynamic process of crys- 
tal formation. In actual experiments, the in- 
coming beam intensity is often much less than 
Ec. However, through self-focusing, the beam 
cross section reduces and the field intensity 
finally exceeds Ec- The field distribution in 
the beam then becomes unstable, and filaments 
would be nucle. ;ed by fluctuations in the me- 
dium.  The intensity in each filament is so high 
that stimulated scattering processes set in and 
deplete the laser powe»-   .. the filament very 
rapidly.* Fluctuatior.   and stimulated scatter- 
ing processes would probably prevent the field 
distribution from reaching a stable configura- 
tion of filaments, but each filament already 
formed should have the characteristics of fil- 
aments in the final-state configuration. 
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Optical Noniinearities of a Plasma"1 

N. BLOEMBEBOF-Nf  AND  Y.  R.  SHE» 

Dtparlmrtt of Physics, Unhtrsily of California, Beridey, California 
(Received 6 August 1965) 

Second-harmonic generation and stimulated Raman effects for a plasma are calculated by the same 
methods that have been used for bound electrons. The nonlinear susceptibility describing the stimulated 
Raman effect in a Raseous or r ictallic piasma is 6 to 10 orders of magnitude smaller than the corresponding 
effect in liquids. This process in a plasma can also be described as the parametric interaction between a 
damped plasma wave and two light waves. The second-harmonic generation ttom a plasma boundary is 
dominated by a surface term which originates from the discontinuity in the normal component of the 
electric field. It is shown that the observed second-'aarmonic generation from metallic silver probably steins 
from bound ion cores in the surface layer rather than from a plasma surface term. 

I. INTRODUCTION 

THE basic r.onlinearity in the interaction between 
a free electron and an electromagnetic wave is 

caused by the Lorcntz force. Additional noniinearities 
may result from convective density fluctuations in the 
plasma. The noniinearities in gaseous plasmas have been 
studied extensively in the microwave region of the 
electromagnetic spectrum.1 ^ Recently much attention 
has been given to optical noniinearities of a plasma, 
although they are by their very nature rather small.3-11 

In this paper hydrodynamic terms and convection will 
be ignored. 

"This research was supported by the U. S. Office of Naval 
Resparch. An abbreviated version of this work was (»resentefi at 
the Physics af Quantum Electronics Conference, Puerto Rico, 
I960 (unpublished). 
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• H. Cheng and P. B. Miller, Phj-s. Rev. 134, A683 (19W). 
• P. M. Platiman, S. J. Buchsbaum, and N. Tzoar, Phvi, Rev. 
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The same basic formalism can be used to describe the 
noniinearities for bound and free electrons. This is par- 
ticularly evident in the formulation of Cheng and Miller5 

and of Pine,12 who emphasized the self-consistent-field 
description of the nonlinear susceptibilities. In Sec. II 
of this paper, the second-harmonic volume polarization 
for a plasma is rederived. The self-consisteat-field cor- 
rection on this longitudinal polarization is explicitly 
exhibited in the same manner as has been done by 
Ehrenreich and Cohen13 for the longitudinal linear 
dielectric constant. In Sec. Ill, it ic shown that surface 
terms are actually more important than the volume 
effect for the second-harmonic generation (SHG) from 
a metallic surface. Jha14 has first called attention to 
these plasma surface terms. Our results are somewhat 
different from Jha's and in better agreement with 
recent experimental observations. We show furthermore 
that the dominant contribution to the SHG may come 
from bound electrons in the ion cores at the surface 
rather than from the conduction electrons. 

The next higher order nonlinearity describes the 
Raman-type effects in a plasma. If, for example, a 
laser beam at frequency wi is incident on a plasma, the 
plasma will present exponential gain for a light beam 

» A. Pine, Phys. Rev. 139, A901 (1965). The authors are Indebted 
to Dr. Pine for making his manuscript available before publication. 

» H. Ehrenreich and H. H. Cohen, Phvs. Rev. 115, 786 (1959). 
» S. S. Jha, Phys. Rev. 140, A2020 (1965). The authors are 

indebted to Dr. Jba for receiving a copy of this paper prior tq 
publication. 
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at w^ Wi—«j,,,,-,, where ü)p,,r.,r is the frequency of a 
plasma wave with wave vector qt— q,. If both beams 
at o>i and u, are incident, generation of the antistokes 
frequency at 2&!/,~co, is possible, etc. All these effects 
are derived in a straightforward manner in Sec. IV by 
a simple extension of the SHG calculation of Sec. II. 
The same numerical results are obtained as from more 
complex calculations.7-11 The stimulated Raman effect 
is so small that it will be of little use as a probe for 
gaseous plasmas, although the Raman-type nonlinearity 
may be important in semiconductor plasmas in the far 
infrared. In Sec. V the same Raman effect is described 
as the parametric interaction between two light waves 
and a plasma wave. This illustrates again the parallel 
treatment for free and bound electrons. The Raman 
effect in a plasma is quite analogous to the Raman 
effect in liquids and solids,16 if the optical phonons are 
replaced by plasmons. 

H. SELF-CONSISTENT-FIELD CALCULATION OF 
THE LONGITUDINAL SECOND-HARMONIC 

POLARIZATION IN A PLASMA 

General expressions for the lowest order nonlinear 
susceptibility have been given by Cheng and Miller 
[Eq. (13) of Ref. 5] and by Pine [Eq. (18) of Ref. 12]. 
Their results are valid for Blcch one-electron wave 
functions in a periodic lattice potential and can be 
specialized for the case of free electrons. Because of the 
complexity of the expressions, it seems worthwhile to 
rederive the result for free electrons in a special gauge, 
which will clearly and explicitly exhibit the self- 
consistent-field corrections. Ehrenreich and Cohen first 
utilized this method to get physical insight in the linear 
self-consistent dielectric constant. They also pointed 
out that the one-electron Hamiltonian approach is 
equivalent to the random-phase approximation in the 
exact many-body problem. 

The zero-order or equilibrium density matrix for an 
ensemble of free electrons with eigenstates, 

|k>-Q-Wexp(tkT), 

where Q is a volume of normalization, is given by 

P(0)|k)=/oMk). 

Here ft is the Fermi-Dirac distribution function and 
ft=Vki/2m is the unperturbed (kinetic) energy in the 
state | k). The equation of motion for the density matrix 
must now be solved in successive approximation, when 
the perturbation by the transverse electromagnetic 
wave and the self-consistent Coulomb screening poten- 
tial is admitted. Since general expressions have already 
appeared elsewhere," here only the physically dominant 

terms will be retained. The perturbation may be 
written as 

X^n^Wlmc^A^+e^,. (1) 

It can be shown by explicit calculation that for free 
electrons   the  contributions  from  the  linear  term, 
— {e/2mc) {p- A+ A- p}, are smaller by a factor (kw/mc2), 
where w is the light frequency. The transverse vector 
potential A describes the light wave inside the plasma. 
It is not the incident field, but the transmitted wave 
into the plasma, 

A=Aoexp^'q-r—«W)+Ao* exp(—»q>r+toi/).   (2) 

The complex amplitude Ao has twice the value of the 
more conventional definition. 

With the perturbation given by Eqs. (1) and (2), the 
lowest order nonvanishing density-matrix elements at 
the harmonic frequency 2u are given by 

- ^Kkk2"' I k-2q)= (tk- ek_t,)(k|pP-) | k-2q) 
+ (k|(eV2^)A2+^.|k-2q){/o(ik)-/o(tk-„)} 

+fr(k|p«")|k-2q).    (3) 

The last term is a phenomenological damping term to 
represent the effect of collisions and Landau damping. 
The screening potential is related to the induced charge 
density by Poisson's equation. Using the Fourier series 
expansion for the screening potential, 

v.(r) = Z,'W,'ff,v-r, 

and for the charge density, 

one finds 

(k|^.«"Mk-2q) 
= (W/V) T.Ak'\p™\k'-2q).    (4) 

When Eq. (4) is substituted back into Eq. (3), the solu- 
tion can, after some manipulation, be writtenin the 
form 

<klp»">!k-2q) 

/o(^-Sq)-/o(«k)   «W 1 

tk-j,-<k+2foo+jr 2nic1 «gcF(2w,2q) 
(5) 

» Y. R. Shen and N. Bloembergen, Phys. Rev. 137,1787 (1965). 
"See, for example, Ref». 5 and 12, or N. Bloembergen, ^0»- 

linear Optics (W. A. Benjamin, Inc., New York, 1965). 

where egcp(2ü),2q) is the longitudinal, frequency- and 
wave-vector-dependent, self-consistent linear dielectric 
constant calculated by Ehrenreich and Cohen, 

4^       /o(«l-,)-/o(6k) 
escFlw.q)5*! 2- •       W 

q*   »' «k-n-Ck+M-tT 

The Fourier transforms of the current density opera- 
tor are given by 

j«»(q,0)= (A«/2m)«r*-'(-iq+2V), 
j'1>(qA) = -(C»M)Ao. 
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The expectation value of the nonlinear second-harmonic 
cunent density is 

0'(2«,2q))=Sk(k-2q|;(»>|kXk|p'w|k-2q) 
= (feA»)El(k-q)(k|p«")|k-2q). (7) 

The nonlinear current density given by Eqs. (S) and 
(7) creates the second-harmonic field. At optical fre- 
quencies the change in electron energy and the damping 
rate are small compared to the photon energy. If the 
denominator in Eq. (5) is thus approximated by Ifu», 
one finds immediately from the relations T.kj(ik) = 0, 
£q/(c*) = Arq, where N is the number of electrons per 
unit volume, that the current density is given by 

PHV) = lNe*qA oV2MWs«cF(2ü,>2q)] 

Xexp(2iqT-2tai/). 

The corresponding nonlinear susceptibility is obtained 
by replacing j(2a)) by — 2twP(2w) and the vector po- 
tential A by («/«)E. One finds 

pNL8= JJNL^) ;£>= r-,W<!
8£oV4OTV€8CF(2w,2q)] 

Xexp(2tqT-2to/).    (8) 

This result for the longitudinal second-harmonic po- 
larization could also have been obtained more directly 
from the relation that the divergence of this polariza- 
tion equals the second-harmonic charge density: 

divP(2üf) = eZk<k|p<s->|k-2q) 

PN"=C2teq/(2?)']Zk(k|p«-»|k-2q). 

Substitution of Eq. (5) and expansion of its denomina- 
tor in the approximation, ÄV2»«{2k- (2q)+ (2q)3J«2fco, 
again yields Eq. (8). In the limit of low electron density, 
2wS>iap and «gcF~l, and substituting q/<ti=c~l, one 
fines the same nonlinear susceptibility (—t.VeV4m!cü)3) 
as was first found by very elementary considerations.17 

The occurrence of «SCF in the denominator was not 
explicitly noted before, but its physical origin is evident 
from the present calculation. Since the polarization is 
longitudinal there is no second-harmonic power radiated 
in the plasma. There is, however, a reflected harmonic 
wave with the electric vector in the plane of reflection. 
The reflected-harmonic amplitude has been expressed 
in terms of the nonlinear volume polarization by Bloem- 
bergen and Pershan." Equation (4.12) or (4.13) of 
their paper with a=0 gives. 

EH.nl{2w) 
4^pVLBrlti(u\ sinö. 

 •   (9) 
e"1(2w){l-«-I(2w) sin2fl.}"!-|-t(2ü)) cos*.- 

Here 0, is the angle of incidence of the fundamental 

" See Ref. 3, or N. Bloembcrgen, Nenlinear Optics (W. A. Ben- 
jamin and Company, New York, 1965). 

»N. Bloembergen and ?. S. Pershan, Phys. Rev. 128, 606 
(1962). There is a misprint in Eq. (4.12) of this paper. The de- 
nominator of the last term should read "^^,/W/, cos*r+«r COSSR" 
instead of "„•"W1 COS$T+*T costf«." 

wave on the plane plasma boundary, f (w) is the trans- 
verse linecr dielectric constant of the plasma. PNL8 is 
given by Eq. (8) and it should be remembered that EQ 

in that expression is the electric field after refraction 
just inside the plasma. This £c should be computed 
from the incident amplitude with the appropriate linear 
Fresnel equation. For a metallic reflector this implies 
a considerable reduction in its numerical value. A 
quantitative discussion will be postponed until the 
next section. There it will be shown that there are 
surface terms which may contribute more than the 
volume polarization. This is perhaps not too surprising, 
since the volume term is essentially a magnetic dipole 
term which vanishes, for constant u, in the limit q—*0. 

When the incident electric vector is normal to t** 
plane of incidencs, there is, however, no surface con 
tribution. In this case the reflected amplitude Es (2«) 
from Eqs. (8) and (9) and Fresnel's equation may be 
expressed in terms of the incident amplitude E(i) as 
follows: 

-iirLXe* 
£*(2<-)=-.- 

4mJfW»(l-}x») 

X 
sinö, 

[(cos^-fc^+d-i*)«»^] 

4 cos^v 
X- 

[cosfl.-Kcos1».-*»)1'»:!» 
-iEjoy. do) 

Here x-up/u, and wr
2=4irAre2/j» is the plasma fre- 

quency. The dielectric constants have been taken in 
the limit q-*0, 

«(ö))=l —Wp'/W5, 

«(2w) = «8CF(2ü>,0) = l-uj/iv*. 

Except for the factor «SCF
-1

, noted above, this result 
agrees with a calculation by Jha" on the basis of the 
Boltzmami transport equation for a free-electron gas. 

III. THE SECOND-HARMONIC SURFACE 
POLARIZATION 

Jha called attention to the importance of surface 
terms which are connected .vith the discontinuity of 
the normal component of the electrk Id at the bound- 
ary. For these terms it. is essential that the incident 
field has a component in the plane of incidence. Choose 
a coordinate system where this plane is the xz plane 
and let % be the direction normal to the boundary. 
According to the macroscopic equations the discon- 
tinuity in the normal component is described by 

dE./dz= l\-l-^)-]E..^{i), 

diKUKion6''4"ThC aUth0r5 are iRdebled t0 ÜI-iU t™ * ^Pf"' 
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where £»_f o is the normal component of the transmitted 
wave just outside the plasma. It consists of the sum 
of »he normal components of the inrident and rellected 
waves and is «(u) times larger than the ncrmal compo- 
nent just inside ihe plasma. 

In a microscopic picture there if- of course no strict 
discontinuity. The normal component E, varies rapidly 
over about one Thomas-Fermi screening length in the 
case of a metal. In the case of semiconductors, insulators 
or any other medium one can still "^ect thr.t the field 
component charges rapidly over about one interatomic 
distance. For a deiuilet calculation a precise knowledge 
of the surface potenti.il and the surface-state wave 
function would be rcvjiiired. 

Fortunately, the radiation field of a thin slab of 
polarization. 0 's«X, does not depend sensitively on 
the distribution of the polarization as a funct'on of s, 
but only on the integral JTdz. The second-harmonic 
surface polarization may therefore be calculated in ihe 
following manner: The discontinuity in the normal com- 
ponent of the fundamental frequency induces a free 
charge density at the surface 

makes an angle of incidence 0; with the normal, 

p(r>a.)= (l/4«)Cl-r»(«)3£^foS(s> (1!) 

For a free-electron gas the current density induced by 
a field .d (!>•) for an electron density pm{t) = X is 

(•^))=J(1>(<W>P (0) 

(N<?/mc)k{T>u)= Qf*/mu)E{t,a). 

In the same manner the second-harmonic current den- 
sitv corresponding to the oscillating free charge density 
{Hi at the surface is 

tJ-
J'"(2a)))= (e/.'T«-;H<o)[l- t-Ha-)] 

Xl(«)£-+#{«)exp(2tft^). (12) 

For the normal component of this surface current 
density there i? some ambiguity in Eq. (12) whether 
one should take the normal component of E(a,') jv.-t 
outside or inside the p'asma. If one takes half the £um 
of those values, the normal surface current density 
becomes 

j.<**>{tM' («/4-)rlfi7oj)[l — 

XD-H« ho(w)]Jexp(2^p;). (13) 

It should be noted that this normal component will 
make the dominant contribution to the reflected har- 
monic intensity from highly reflecting materials. It 
follows from the Fresnel equations that the tangential 
component?; of the incident and reflected waves at a 
nearly cancel each other, while the normal component 
just outside the surface is aimost twice the nor lal 
component of the incident field. The norma' component 
Em^t is expressed in terms of the incident electric field 
amplitude E"* wKch makes an angle p with the plane 
of incidence and the direction of the incident beam 

/=:.-, o(^=- 
2ros0,sm0. 

cosÖI+«-1'J(w)(l-e-1(w) sin2^)"2 
-/■("co-;v«. 

(14) 

From Eqs. (13) and (It) it follows that the second- 
harmonic intensity generated by this surface term is 
pro|K)rtional to cosV. This dependence has recently 
been observed by Brown and co-workers30 for second- 
harmonic generation Irom metallic silver. It is therefore 
of interest to compare the intensity produced by the 
surface term with the volume terms of the preceding 
section. The radiation from a thin slab-source distribu- 
tion has been given by Bloembergen and Pershan.3' 
Their Eq. (ö.22) may be used with the following sub- 
stitutions, -2to)/>NLSd=j,,urf, (*=*-$„ er=e(2«), 
(M"

111
 sinö.u -- sinOi, tu— t(a'). The result is 

£/r"(2a') = 
23re~1(u!) hi no/"' 

cosö.-f t 1-(2tü)(l-t '(2^ sinö,)"2 

Xj.^'fa).    (15) 

When 0, approaches zero, this field rapidly becomes 
very small, because j,{2^) itself approaches zero, as 
well as the factor sinö,. In that case the tangential com- 
ponents of the surface source in Eq. (12) should be 
taken into account. The radiation field can quite 
generally be calculated with Eqs. ^6.i- and (6.22) of 
rtef. 18. The resulting harmonic amplitudes should be 
added to those obtained from the volume polarization 
and subsequently squared to obtain the second-harmonic 
intensity. The resulting equations for arbitrary polariza- 
tion direction c and arbitrary angle of incidence #< of 
the fundamental field are cumbersome and will not be 
reproduced here. The detailed results are essentially 
the same as those of Jha.a 

It is, however, of inierest to campan* the order of 
magnitude of the volume term given by Eqs. (8) and 
(9) with the surface term given by Eqs. (12), (14), and 
(15) near angles 0,= c-—r/'4, where the angular factors 
do not have zero's. Leaving out all angular factor., the 
ratio oi the second-harmonic amplitudes resulting from 
the s rface contribution given by Eq. (IS) and the 
volume contribution given by Eq. (10; has the order of 
magnitude (©*/«/)«(&)), or about unity for W<ü!P. On 
the basis of these calculations, it. is doubtful that the 
observed SIIG from metallic silver by Brown cl al. has 
its origin in a plasma etTect. When the experimental 
value2 Uj>/co-=2.2) instead of 5, is used in Jha's equa- 
tions, an observable volume effect should remain, v.hen 

* K. Brown. R. F.. Parks, and A. M' Slcppcr, Phvs. Kcv. Leiten 
M, I02Q HO«). 

"S. S. Jim, Phys. Scv. Leitew 15. 412 (1965). Thi? paper 
appeared alur nur manusciipt had hc-.n submitted. The experi- 
mental points should be compared with a theoretical calculalinr 
forwP/w = 2 2 rather than 5. 

B H. Ehrcnrcich and h. R. Phillip, Phys. Rev. I?8,1622 (1962). 
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the incident field is polarized normal to the plane of 
incidence. 

It has been suggested that the silver ion cores23 of 
the surface layer play a dominant role in the SIIG. 
Further support that one does not deal with a plasma 
effect comes from the observation by Blocmbergei; and 
Chang59 thnt silicon, germanium and other insulating 
material with bulk inversion symmetry also show a 
reflected second-harmonic intensity with a cosV de- 
pendence on the angle between the incident electric 
Held and the plane of incidence. The atc.ns in the sur- 
face layer are not at positions of inversion symmetry, 
and if the incident electric field has a component 
normal to the surface, large harmonic dlpole moments 
can be induced in these atoms. 

The dominant term for these bound electrons in the 
interaction llamiltonian is the term 

3C(') = -(e/2mc)(p-A-fp-A) 
« - (eh/2imc) (ßA J8z+ 2 A ■ V). 

It should be kept in mind that .d, varies rapidly in the 
first atomic layer and that dA,/dz there is so large 
that the "quadmpole-likc" contribution from this term 
has the same order of magnitude as an electric dipole 
contribution. The detailed matrix elements of 3Ca), 
which is very inhomogeneous over the surface orbital 
funct:,n •/,, are difficult to evaluate. Because both 
3C!I> and \j/, have even and odd terms in s, the following 
nonlinear current density is induced in the surface 
atoms. 

Jboandpa'.r) 

= .V oZ, 
(*.Miffn0l»(nD)(«!3CP)i»')(«'|3c(i)|*t) 

(!r.-ir„-fM(ii'.-nv+2/to) 

-{-other terms which differ in the order of the 
operators and in the frequency denominators.   (16) 

The number of atoms per unit volume is .Vo. The cur- 
rent density operator is defined by 

j»Hi)=Ä(r- ro)- (Äe/2m)V+(fe/2«»)V«(r-re).   (17) 

For media with inversion symmetry, the second har- 
monic source density given by Eq. (16) is appreciable 
only in a surface layer of thickness d, where d is about 
one interatomic distance, or the Thomas-Fermi screen- 
ing distance in a metal. 

A rough estimate of the bound surface states can be 
obtained as follows. It is known that the core polariza- 
bility of silver ions contributes appreciably to ths 
dielectric constant of the me'al in the near ultraviolet.2- 
It is therefore not unreasonable to assume the same 
nonlinea'- polarizal.ility for a silver ion at the surface 
as for a GaSb or Jn.As molecule in the bulk of those 

^ .';e paper by N. Bhembcrgcn an 1 R. K. Chang in Rcf. 11. 
•" Seo Rcf. 22. 

piezoelectric crystals. The current density integrated 
over a layer of thickness d gives therefore a surface 
source 2iij>xShdE ^.f, where xNL~10"'9 esu as for 
GaSb, aiid (/~2Xiü-' cm. This should be compared 
with the plasma-surface source of magnitude (e/4mw) 
XE^+o2 according to Ecj. (13). One linds for the ratio 
of bound-surface to plasma-surface contribution STWW' 
XxNI'<^~lra8 in our numerical example. For the second- 
harmonic intensity this ratio must be squared, and the 
bound electron in the surface layer could easily con- 
tribute one or two orders of magnitude more than the 
total plasma contribution. For the bound-surface elec- 
trons the same symmetry considerations hold as for the 
plasma effect. The surface layer is amorphous and 
essentially Isotropie for directions in the plane of the 
boundary. The current density has tengential com- 
ponent j, proportional to E,E, and j, proportional to 
EyE,. The normal component j, proportional to E,1 

will be dominant for good reflectors since the normal 
component E, is much larger than the tangential com- 
ponents in that case The second-harmonic intensity is 
consequently proportional to y£

J or cosV, and the elec- 
tric field £/((2ü)) should lie in the plane of reflection. 
The effect should occur quite generally at th'.- surface 
cf dense polarizable media, including liquids. The SHG 
should not depend strongly on the plasma density. The 
available observations on silver, silicon, and germanium 
are in agreement with this picture. 

IV. THE RAMAN SUSCEPTIBILITY 
OF A PLASMA 

The next higher order nonlinearities may be calcu- 
lated in a similar manner. In principle, again volume 
and surface terms should be con' >ered. The most 
important case is the volume effect, which occurs when 
two electromagnetic waves traverse the plasma, with a 
difference in frequency close to the plasma frequency. 
The vector potential in Eq. (2) now consists of four 
terms with amplitudes AL, AI*, A„ and A,* and fre- 
quencies o!L, —at., "., and —u.-,, respectively. The 
dominant term in the density-matrix quadratic in »he 
field amplitudes results from the resonance which occurs 
when WL—U, is near the plasma frequency. In analogy 
with Eq. (5) one finds immediately, 

/»(«fcHrHU,)—/«^») 2AM i* 

'tHu-iii-«k+ÄGo.+wJ+iT    2.«ncJ 

XescrC"!.—«., qt—qO- 

For cof—üJ.~ü!J,, ReescF-^O, a resonance occurs. Large 
density fluctuations are induced at the difference fre- 
jiiency, which beat again with the incident laser field 

at w;,. In th-' manner a curren density at the Stokes 
frequency '    is induced, which is cubic in the field 
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amplitudes, 

jiUm«.(w„q.)=i;k(k|p+''"-"i)ll'+«l«-H.-)('t+q»-q 

-(r/WMijk+q.) 

-<A\AL\U. 

i\ 

nhhsciffaL—u,, qL-q.) 

„ /o(<k+,^,t)-/o{€i) 
xL ——-—■ (18) 

When the plasmon energy is considered to be the lead- 
ing term in the denominator, li{(1:L—o.\)y>{h'/2in) 
X(qL—qj-kp and au~w.>l', an expansion of the 
denominator yields for Eq, (IS) the simple expression, 

Jium»n(w.Jq«) 

-AVM^A. (qL-q.)2 

i'c'fSCP*^^—W,, qi—q.) (a-/,—ü;,)2 

(19) 

For forward Raman scattering the last factor may be 
replaced by <r2. It should be noted that the picture of 
resonance with a plasma wave only hs validity for 
jqz,—q.'i«^»-1 where Lr> is the Debye length of the 
plasma. For larger values the real part of <SCF(W, qt— q^) 
cannot be made ef|iial to r»ro. For gaseous plasmas, 
the resonance occurs only near the forward direction. 
At th- plasma resonance <SCF* IS negative imaginary 
r..u has a value —iiopr)"1, where the decay lime for 
the power is determined by the Landau damping rate 
and the collision raie T-1=TLam!au~I+,rcoU_1- One may 
again replace the current density by an equivalent 
polarization and the vector potentials by the corre- 
sponding electric field amplitudes. In this manner the 
Raman susceptibility for a plasma is introduced. For 
resonant scattering in the forward direction one finds 

P(«.,q,) = Xium«il£ii2E, 

-i.V. 

ufufm^iufT) 
■\EL\*n.,    (20) 

Off resonance, where «SCF~1) one should replace ivft 
by unity H Eq. (2ft), In that case the same formula 
could have been obtained from a very elementary inde- 
pendent electron model. 

The Raman polarization given by Eq. (20) is 'Xj0 

out of phase with the Stokes field E.. The susceptibuity 
is negative imaginary and produces an exponential 
gain at the frequency w.. If one takes a plasma char- 
acterized by the same parameters as the case con- 
sid'.ed by Kroll, Ron, and Rostoker,:s »„ = 10u cnrs, 
WpT^lO', and wi. = w.+a>„=2ir(4XiOH)-1, one finds 
xüamM^W-0 esu- This is about ten orders of mag- 
nitude smaller than the Raman susceptibility of liquids 
ordinariiv used in Raman lasers. Since the plasma 

frequency is very small compared to the light frequency 
in this example, the susceptibility can be considerably 
enhanced by introducing a small angle between the 
Stokes and the laser beam. In that case one should 
return to the more general expression Eq. (19). The 
optimum value of 

[tscF"(-ui-w„qi.-q.)T'1(qL-q.)i(wf.-'J.)_s 

can be made about a factor 104 larger in this example 
than (iiipric2 which it assumes in the forward direc- 
tion. The nonlinear susceptibility for this optimum 
direction, occurring at angle of about 10~a radicn be- 
tween the two light beams, is still six orders of r.r.gni- 
tude smaller than that in ordinary Raman liquids. It is 
doubtful that the stimulated Raman effect in a plasma 
will lead to observable effects. 

Since Kroll and co-workers arrived at a more opti- 
mistic conclusion, it is of interest to show that our 
result can be reconciled numerically with their equation 
for a scattering cross section per unit solid angle. They, 
and other workers, considered a scattering process 
involving four light quanta with frequencies toi, ut, uj, 
andti-L satisfying ihc energy and momentum conserva- 
tion relationships »4—&.'j=&J8—c<!i=&.'ft and q«—qa 
= q;— qi. Although the calculation for ihis cross section 
is considerably more complicated in scattering theory 
than the calculation of an inelastic Raman scattering 
involving only the two quanta wi and w,, the calcula- 
tion of the cor'-csponding complex nonlinear suscepti- 
bility is straightforward and essentially the same as 
for the Raman process. The complex susceptibilities 
automatically t;«ke account of all questions of phase 
coherence and elastic and inelastic scattering processes. 
In direct analogy to Eq. (20), one (iiids a polarization 
at 6),, 

F" '■(ü)4 = <ijj-l-«j —OJi) 

/wHqs-qO2 

o)iü>ij!jj)ifii,{ci;i—ü!i)°tsrr'(cc?—a'i, qj— qi) 
(21) 

For &!j=6!3—«£, o-A represents, of course, the anti-Stokes 
frequency. 

Consider a homogeneous interaction region in the 
plasma of volume V=Al, where A is the cro.is-sectional 
area of the three beams Et, F.*, and lü and / is the length. 
The field strength E, of the phase matched wave at au, 
which is paramctriraüy ger.erat-d in the volume V, 
is j/ven by2' 

£4=4TP!,L(««=«g+«j"u)I>J^- (23) 

The total power radiated at a'« is 

r STHSVIJEIHESI'I^I
1 

/«--= -A | Ei\*= —~ ——-AP.    (23) 
2» ;;;6( 'oi-WiOs21 «8CF| 

2 

»»S«e Ref. 8. "See Ref. 17. 

» 
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A factor 2w rather than Sir is used In the denominator 
of the Poynting vector because our amplitudes are 
defined in Eq. (2) as twice the conventional ones. In 
this form the result may be compared with the scatter- 
ing cross section per electron for a four-photon collision, 
o-'a+wj -->w!-ha't) given by Kroll, Ron, and Rostoker, 

da      («»/WW £:[*!& I1 

«(k-Ah),      (24) 
da niifnfrwtWliscFr 

where kt=ü:p
i/ct=iifnoe'i/mci and 8(k-Ak)wF, and 

the amplitudes now have the conventional definition. 
The total cross section for the volume V, integrated 
over the solid angle d% which is determined by the 
diffraction limit from an area A, (fQ= (-lircVf-a'-1)/!*1, 
is obtained by multiplying Eq. (24) by rtvAldQ, 

irn^APlEil^E^ 
(25) 

The number of incident quanta in the beam at «j per 
second is clEy^A/Sirfiuz. The number of scattered 
quanta at a>« is 

e|£,|,<r,otal/&rÄ«s 

and the total scattered intensity at wi is 

It= (w«/«»)c 1 Ez i VtotaI/ST. (26) 

When Eq. (25) is substituted into Eq. (26), a result is 
obtained that is a factor 2' smaller than given by Eq. 
(23). This difference may be ascribed to the difference 
in definition of the field amplitudes. The amplitudes 
defined by Eq. (2) and used in Eq. (23) are a factor 
2 smaller than the conventional amplitudes used in 
Eqs. (24-26). 

Although there is formal agreement between the 
two results, the rather more optimistic estimate of de- 
tectability by Kroll and co-workers can be traced to 
their use of the scattering cross section per unit solid 
angle. For a diffraction limited beam the total available 
solid angle is quite small, and the total scattered in- 
tensity is probably more significant from an experi- 
mental point of view. Baym and Ilellwarth have inde- 
pendently arrived at. a similar conclusion.27 

In a metal plasma tnc electron density can be higher 
by eight orders of magnitude than in the preceding 
example, while the quality factor UpT of the plasma 
resonance in silver can be taken as 105. The nonlinear 
susceptibiliby for two ultraviolet beams could thus be 
substantially higher than a gaseous piasma. Unfor- 
tunately the transparency of metais for frequencies 
&J>UP is far from perfect due to excitation of core 
electrons. The absorption from powerful ultraviolet 
beams, if these were available, would probably be 
prohibitive. The best possibility to detect the stimu- 

lated Raman elTecf in a plasma would appear to be for 
infrared beams in a semiconductor plasma. Spontaneous 
inelastic or Raman scattering should be easier to detect 
than the stimulated effects. 

V. THE INTERACTION BETWEEN TWO LIGHT 
WAVES AND A PLASMA WAVE 

The Raman and Brillouin effect in liquids and solids 
can be described as the parametric interaction between 
two light waves and a vibrational wave. When the 
optical or acoustical phonon wave is heavily damped, 
this description is equivalent to one in terais of Raman 
susceptibilities.8* In this section the Raman efTect in a 
plasma will be described in terms of a parametric inter- 
action between two light waves and a plasma wave. 
An equivalent discussion with detailed numerical ex- 
amples has independently bem given by Cosimar." 

Consider a small volume element at the point r. Let 
the average deviation of the electrons from their equi- 
librium position in this volume elemept be a(r). 
Introduce normal coordinates Qk as the Fourier trans- 
form of this average deviation or local strain of the 
electron gas, 

0 -/■ 
(r)e-''k-tfV. 

The canonical conjugate to this variable is Pk. The 
Hamillonian density for the plasma waves then takes 
the form,81' 

SCpi™.=| Z i((i/Nm) Pk • V^+aWu ■ Q_k 

-H^WOkO-O-   (27) 

Here .V is the average number of electrons per unit 
volume and a is the bulk modulus of the electron gas. 
The fluctuation in the electron density from the average 
due to the presence of plasma waves is 

«p(r) = ATdivu = tWi:k k-Qte'11'. 

The change in the interaction of the two light waves 
with the electrons in a un;t volume due to the presence 
of the plasma waves is consequently 

where 
A=Aie,"it,r-,"'"''+A1e

,',"-r-,'",+c.c. 

When all nnnrcsonant pjrtinbations are truncated, the 
interaction Hamiltonian density between the two linear 
parallel polarized light waves and the longitudinal 
plasma waves (Olik) becomes, 

Kint« (/iW/W) 'LukAiA,*Qt*e«vr-*r-v-t+c.c. (28) 

n Paper by G. Baym and R. \V, HeUwarth in Rd. II. 

»Sec Rff. 15. 
B G. C. CoMmar (private communication). The authors are 

Indebted to Dr. Cosimar for receiving a copy of a forthcoming 
paper. 

* See. for example. C. Kitte!, Quantum Theory of Sdids (John 
Wiley & Sons, Inc., New York, 1963) p. 35. 
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The equations of motion for the plasma coordinate are 

Pk^ -3(3Cpla3nia+Äi„,)/3()t, 

Öt-+a(jcPiasnia+Ki„t)/cii\. 

These eq'iations of motion can be combined into a 
wave equation for Qt. Because of the presence of 3Cini 
a driving term proportional to the light amplitudes 
AzA,* is added to the plasma wave equation. Landau 
damping and damping by collisions may be taken into 
account by a phenomenological damping term, 

0k+aV*Qk+o>p*Qk 

= {mfnt&A LA .*+ (2 Wr')(?k •    (29) 

The exponential factor 

exp{t'(qt-q.-k)-r—J(ü;L—a'.-a-i)/} 

can be dropped from the inhomogeneous driving 
term, because the effect of coupling between the light 
waver and plasma wave will be small unless the condi- 
tions of conservation of energy and momentum are 
satisfied, «£■—£*,«*«» and qi—q,= k. The plasma wave 
concept only has validity, if its wavelength is long 
compared to the characteristic Debye length. For the 
most important case of forward scattering with 
parallel l?ser and stokes beams this condition will 
usually be satisfied. One may then write k=qi—q, 
=aip/c, because the dispersion in the plasma frequency 
will then be negligible since {ajNPi){qt—q$<&**. The 
characteristic time r' in Eq. (29) refers to the decay 
time for the amplitude. The decay rate for the power is 
related to the imaginary part of the longitudinal di- 
electric constant by 2r'_!= i*cf"uip. 

The wave equations for the light amplitudes.-! L and .4, 
are also augmented by a nonlinear term, because the 
interaction Hamiltonian gives rise to a nonlinear cur- 
rent density, 

iNL(a-.) = -ca3Cin,/^i*= {+iN*/mc)kAtQi*   (30) 

and a similar expression for j^^iut). The wave equa- 
tions for ihe two light waves become, consequently, 

(31) 

(■J2) 

The set of three coupled nonlinear wave equations is 
familiar from the Briliouin and Raman effect in other 

-ÄL+c*V-= i4*iNt*/m)kA .Qk, 

-i.+c^= i4iriNf/m)kAiQk*. 

media. If the laser amplitude can be taken as a constant 
parameter, a set of two linear coupled equations (2(>) 
and (32) for A, and Q results. An exact solution can 
readily be written down, but 'he following approximate 
solution will be adequate for our purposes. Since the 
plasma wave is heavily damped its amplitude is essen- 
tially the driven steady state value, when the right- 
hand side of Eq. (2()) is separately put equal to zero. 
When the value of Q so obtained is substituted back 
into Eq. (30), one obtains for forward scattering. 

iNL(«.) = - 
XW 

WVWP^SCF" 

AL\
2
A. 

iW 
\AL\U..    (33) 

This is identical to the result of Eq. (19) taken at 
resonance, escF'=0. The equivalence of the two dif- 
ferent ways to describe the interaction between photons 
and plasmons is thus established. When the value of Q 
is substituted into the wave equation (32), one obtains 
the exponential gain i.t the Stokes frequency. Coupling 
with anti-Stokes waves in the plasma, etc., can of 
course be treated in the same manner. 

VI. CONCLUSION 

The optical nonlinearities of a plasma can be treated 
by the same methods that have been used to describe 
the nonlinear optical properties of other media. The 
nonlinearities of the plasmas are generally smaller by 
many orders of magnitude, because they would vanish 
altogether for free electrons in the electric dipole 
approximation. 

Although spontaneous nonlinear scattering processes 
in certain plasmas may be detectable, stimulated Raman 
effects would hardly be accessible to experimental ob- 
servation at optical frequencies. The situation is of 
course much moie favorable in the far infrared and 
microwave region. Even the lower order nonlinear 
process of second-harmonic generation from a plasma 
has not been established experimentally at optical fre- 
quencies. The second-ha^ -nonic radiation observed from 
a silver surface is shown to have its origin in the uon- 
lincarity of bound electrons in the ion cores of a mona- 
tomic surface layer. 

s 
i 
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(1966)]. The factor «SCF

-1
 = (1 - i^r« should be 

omitted from the right-hand side of Eq. {10). Al- 
though the straightforward substitution of Eq. (8) 
into Eq. (9) includes this factor, this procedure is 
incorrect. The reaso.i is that the self-consistent non- 
linear longitudinal polarization given by Eq. (8) 
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tion induced by the self-consistent longitudinal com- 
ponent of the field. This part must be subtracted 
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The coupling of photons and magnons can he reated by the same methods developed for the couplinR 
lietween photons and phonons. The coupled wave equations use derived directly from the Hamiltonian 
density for the quantized fields with the density-matru forma'u nn. The similarity between the spin Raman 
effect and the vihrati""»! Raman effect is emphasized and Ü *■ shown that the spin Raman effect will usually 
be one or two orders of magnitude smaller than the vibrational effect in Raman liquids. The possibility of 
exiciting spin-wave modes by light in ferro-, ferri-, and antiferromagnetic materials is discussed. The com- 
bined coupling of nv jnetic, vibrational, and light waves is also analyzed and a magnon excitation may be 
induced by the stimulated Brilloi'iti effect on a magrctoelastic mode. 

I. INTRODUCTION 

THE Raman effect cap be described as a second- 
order inelastic scattering of light, in which the 

scattering system makes a transition to an excited 
state.1 Originally the spontaneous Raman scattering was 
almost exclusively employed to study vibrational and 

•This research was supported by the U. S. Office of Naval 
Research. 

t On leave from Harvard university. 
'P. A. M. Dirai, proc. Roy, Soc (London) AlH, 710 

(1927). 

rotational excitations of molecules.2 Loudon' suggested 
that electronic excitations of transition-metal ions 
should be observable in the Raman effect. Hougen and 
Singh* independently sticceeded in finding this purely 
electronic Raman effect for Pr* ions in LaFs. 

It is also possible for the exutation to be of a purely 

1 See, for example, G. PlaczeJc, Marx Handbuch der Radiologie, 
edited by E. Marx (Academische Verlagsgcsellschaft, Leipzig, 
Germany, 1934), 2nd ed., Vol. Vf, part II, p. 209. 

•R. J. Elliott »nd R. Loudon, Phv». I-c»«^ 3, It« (1964); 
R. Loudon, Advar.. Phys. 13, 423 (1964). 

• J. T. Hougcr. and S Singh, Phv» Rev Letlcm 10, 406 (Wii). 

MM» 
MM« 
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Kic. 1. Energy diagrams showing 
the spin-Kaman pr.xcsses. (a) Mag- 
netic dipolc Raman transitions in a 
trto-levr! spin system; (b) clcctric- 
dipole Raman transitions in a system 
with negligible crystalline field; (c) 
elcctric-flipolc Kunan transitions in a 
System with an appreciable crvslalline 
field. 

m, = +li, m, " 0 ' 

m^^ -'/:, ml-\ ■ 

90S 80S, 

■ W5 -  — /J 
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m. - 0 
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XIS + V,,,, 

+  mj- nij = 0, II, i2 

dxK) 
:IK) 

(0 

xi s »v.. 

magnetic nature. In this case the excited state differs 
from the ground state in the spin magnetic quantum 
number. Such two-photon processes are well known in 
magnetic resonance.'' The Raman susceptibility for the 
purely magnetic dipole transitions in a two-level system 
[Fig. 1 (a)] has been reviewed by the present authors.' 
The final state with a different magnetic quantum 
number may also be reached with electric dipole transi- 
tions via a virtual electronic excited state, as shown in 
Fig. 1 (b). It is of course necessary in this case to invoke 
spin-orbit coupling to change the spin quantum number. 
This process was also suggested by Loudon.' In the 
simplest case, the transition from the state «,= — J to 
Mt = + J in a Kramers ground-state doublet of a !5), j ion 
would take place with a virtual optical transition to the 
tPirt or 'Pi. manifold. Although the optical electric 
dipole matrix elements cannot change the spin magnetic 
quantum number, it is possible to reach the final state 
with &m,= dzl by invoking the spin-orbit coupling, as 
indicated in Fig. 1(b). More generally, for transition 
metal ions with spin-orbit coupling in crystalline fields 
of arbitrary strength, different magnetic sublevels of the 
ground-state multip!et could be reached via a two- 
photon process with electric dipole matrix elements, 
provided the initial and final states have components 
whose magnetic quantum numbers differ by £»«,=0, 
±1 or ±2, as shown in Fig. 1(c). 

In fcrro-, ferri-, and antiferromagnetic materials, the 
spin excitation is not localized and the elementary 
excitation is described as a spin wave. It is the purpose 
of this paper to present the formalism which describes 
the coupling of light waves to these spin-wave excita- 
tions and to discuss the possibility of observing the 
stimulated spin Raman effect in magnetic media. 

The same formalism that was developed7 • to describe 
• A. jävün. J. Phys. Radium 19, 536 (1958); T. M. Winter, ibid. 

11. 834 (1958). 
• N. Bloembcrgen and Y. R. Shen, Phys. Rev. 133, A37 (1964). 
• E. Carmine, F. Pandarese, and C. H. Towne«, Phys. Rev. 

Letters 11, 160 (1963); R. W. Hellworth, Current Sei. India 33, 
129 (1964). 

• N. Bloenilwrgen and Y. R. Shen, Phys. Rev. Utters 12, 504 
(1964). V R. Shen ami N. Bloembergcn, Phys. Rtv. 137, AI787 
(1965). 

the coupling of light waves with acoustical waves 
(stimulated Uriliouin effect) and with optical phonons 
(stimulated Raman effect) can be adapted to the case of 
magnetic excitations. In Sec. II, the general quantum 
mechanical formulation for coupled boson fields is 
applied to the coupling of electromagnetic fields and 
vibrations. The wave eqiiations for the expectation 
values of the fields and the nonlinear coupling constants 
are derived directly from a Hamiltonian. Although 
localized electronic states are used, as would be ap- 
propriate for insulators, the considerations could readily 
be extended to conductors by using itinerant Bloch 
wave functions. 

In Sec. Ill this same procedure is applied to magnons. 
The exponential gain for the Stokes wave in the spin 
Raman effect is derived from the coupled wave equa- 
tions. The result reduces to that derived from a spin 
Raman susceptibility for isolated magnetic ions, which 
would be appropriate in the paramagnetic case. 

The possibility of detecting the spin Raman effect in 
various magnetic systems is discussed in Sec. IV. Some 
explicit equations are given for the two-sublattice model 
for ferri- and antiferromagnetic materials. The spin 
Raman effect is roughly 1 or 2 orders of magnitude 
smaller than the ordinary Raman effect in liquids, be- 
cause the oscillator strengths of the electronic transi- 
tions involved in the magnetic ions are smaller than 
those involved in the molecules. In Sec. V, the general 
case of coupling between laser. Stokes, and infrared 
electromagnetic waves with phonon and magnon waves 
is discussed. A magnetic excitation could be induced by 
the combination of the stimulated Brillouin and the 
spin Raman effect. 

II. COUPLING OF LIGHT WITH PHONONS 

A detailed calculation of the ordinary stimulated 
Raman and Brillcuin scattering has been given earlier.' 
In this section, a brief review of the subject is given in 
order to develop notations convenient for the later 
discussion of coupling of light with magnons. This also 
affords the opportunity to generalize the formalism so 
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that both the light and the other coupled boson fields 
are quantized. The wave equations together with the 
coupling constants are derived directly from the total 
Hamiltonian of the system 

The Hamiltonian for the radiation field can be quantized 
in the usual way,' as well as the phonon Hamiltonian in 
its harmonic approximation,1" 

(2) 

a, a1 and a, a1 are the annihilation and creation opera- 
tors for photons and phonons, respectively. Their 
operations on the number states 3-ield a! »}=»l'!JM— 1) 
and a' |«) = (n+1)"21«+1>- The photon and the phonon 
wave vectors are indicated by k and q, respectively. The 
particular phonon branch under consideration is labeled 
by j. 

The interaction Hamiltonian consists of two parts, 
the electron-phonon interaction and the electron-radia- 
tion interaction, which may be written in the form 

with 
(3) 

(4) 

In a nonpolar medium the phonon-radiation interaction 
can be neglected. The Raman effect in polar media has 
been discussed elsewhere.11 In Eq. (4), er, E, M, Ü, and f 
are the electric dipole, the electric field, the atomic mass, 
the atomic displacement, and the generalized force on 
the atom, respectively. The indices m and b refer to the 
ftth aLom in the »Jth unit cell of the lattice. Both 
operators E and U can be expanded in terms of annihi- 
lation and creation operators. In the Schrödinger 
representation, 

E«»=Ek CE+(k)e^«-+E-(k)e-» «-], 
E+(k) = i(2irÄa.1I/n

,!2tei., (5a) 
E-(k) = t(2JrÄu.k/^')1'^i*ak^ 

where the fields are normalized with respect to a 
volume V; 

UM»=E[ü+(qAj>,',,E-+ü-(q161i)e-V«-.], 
i-f 

ü-(q)M= (V2A/t.VWJ
l'V(q,4,i>,/, 

(c(q.M}(c(qA;)}^Etc(q,6,i)e*(q,ft.;)°l. 
• See, for example, W. Heillcr, Quantum Tkeory of Radialion 

(Oxford University Press, New York, 1954), 
"Sec, for example, J. M. Ziman, Electrons and Phonons 

(Clarendon Press, Oxford, 1960), 11 V. R. Shen, Phys. Rev. 137, A1741 (1965). 

(Sb) 

Here N is the number of unit cells in the lattice, Rm the 
position of the mth unit cell,«the unit vector indicating 
polarization of the E field, and {e} a set of b vecto^s 
with t{q,b,j) denohiig the relative displacement of the 
Ath atom in a unit cell corresponding to the phonon 
mode specified by q and j. 

The wave equal ions for photons and phonons can bo 
derived using the density-matrix formalisn Let p be the 
density-matrix operator for the entire system. The 
density-matrix operator for the radiation system alone 
is obtained by taking the trace over electron and phonon 
systems, such that pr=Tr(,rtp. From the equation of 
motion for p, we find 

(-+".l)<(H+l)k|pf(/)|«k) 

Xil/ik) Tr<^)((»+l)k|[3C.;„pO)]|«k)>    (6) 

where («k| is the photon number state for « photons in 
the mode k. With (Ek(R,/)) = Tr.o(/)E+(k)exp(ik-R) 
andci!k = itc( and with the aid of Eqs. (2)-(5), the above 
equation yields the wave equation for (Ek(R,/)), In first 
approximation with p(/) = pr(/)p,pO), one finds 

/1 3'      \ 4» Ö8 

\cs a/»    / c* dt* 

where (Pk(R,0) = Trp(/)er is proportional to exp(jk-R 
— tukO- In summing over all Fourier components, one 
can replace the factor A2 by —V2; Eq. (7) then reduces 
to the classical wave equation for (E(Rv0), 

The radiation density as measured by photosensitive 
detectors is, however, proportional to(j /i?))^TrpE+E-. 
The differential equation for (jfi3!) can also be readily 
derived from the equation of motion lor p. As expected, 
the spontaneous emission noise, if present will turn out 
in this full quantum-mechanical treatment. The noise 
problem in parametric cuanlum oscillators and ampli- 
fiers has been discussed by other authors in the Heisen- 
berg representation." In the class«al treatment, the 
spontaneous emission noise caa usually be taken i.Uo 
account in an ad hoc manner by inserting in the field 
amplitude equation a noise term with a random phase. 
In the following discussion, we are mainly interested in 
the parametric amplification of a coherent in-, " field. 
The spontanoous noise will not be considered. The 
radiation fields will be treated classically, since the 
quantized field treatment yields exactly the same results 
as long as the approximation pd)^pr(l)prpil) is made. 

I 

a W. H. LouiMll, A. Yariv, and A. E. Siegman, Phys. Rev. 124, 
1646(1961). 

i 
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We shall assume the presence of only twc em modes,        The phcnon wave equation can be obtained from the 
such that equation of motion for /»,,. For simplicity, we assume 

only two electronic states for each atom, the ground 
E(R>0 = fi(exp[ikrR-t«(0+«sexpr*ksR-»w3/]        state (t\mi and  the excited state {i\mh. Let (C| 

+complex conjugate.    ^Jlm.h(gmh\. The equation of motion for p.p yields 

wherew= UH—üJ«, «, denotes the numbei of phonons with wave vector q and frequency«,, and F is the phenomeno- 
logical damping constant. The matrix element of pC,.?./).*] can be calculated by a perturbation expansion. The 
lowest order nonvanishing result is 

((»«+!)„ c|[3Ce.r,p„.],-,|«,.c)= E :  

<(8+l)„«li:»(er)6-«(|/K/|i:tC«)»-«5*t»«l>l/ 

Here (p«,0—Ptn+i),0) is the average population difference between the phonon number states (n,| and ((«+!),| 
at an arbitrary temperature and (J \ is the intermediate state with arbitrary mixing of electronic and vibrationai 
character. The states {(»+1),| and j«,) in the square bracket yield a factor exp(—«qRw) in the explicit calcula- 
tion. The above matrix element is therefore nonvanishing only if the momentum matching condition q=k(-ks is 
satisfied, since otherwise Z"Mp[»(k(—k^—q)RB]=Oc The matrix element would vanish if the electron-phonon 
interaction were absent, as the electron-radiation interaction cannot change the occupation number of phonons. 

In the long-wavelength limit, the dispersion of the phonon modes has the form 

For acoustic phonons, ß is positive and wo=0. The phonon wave of wave vector q attached to the ground electronic 
state {g I can be defined in terms of a dirnensionless normal coordinate, 

(0,(«,R,0>=(G|I1,(2A^,/Ä)'.'»Tr(,)p.,'",U+(?,*)exp(,q-R-iu,/)|C) 
= (0(q,"))exp(.-qR-M- (10) 

Equations 0>) and (10) lead to the phor.on wave equation 

To1        a -l 
—+2r—W-0V {e,(g,R,0) = >.:E(Es» exp(tq-R-M, 

where i is a third-rank tensor: 

^=(2U.,//,)E-,(H + I),?0'n,',-P(.+ I,,0), 

;.|e(.»i(./*.r,(.+.).-'.v(<"+"""r>(")"|/>(/|£'(")"l"-'> 

L wi-to/.,., (U) 

((«+i)„ilE»(«)»i|/X/|L»(«r)»a|»*<)l 
   exp(«|RB). 

The square bracket in the expression for { is likely to be proportional to («+1),"2, since the states ((«+1),! and 
|«,) must be connected implicitly by the operator U+ (q,b) or a,. The factor JV"* in ( arises as a normalization factor 
attached to the states {(«+1),I and | r.,) because of the definition of U±{q,b) in Eq. (5). The quantity J[, which has 
the dimension of an atomic polarizability, is then independent of n„ and since 

i..,(«+i),ov-P,..M,,Ä)=i;,,p,,«=i, 
Eq. (Il)j?ive8 

l=(2w,/Ä)t. (11 a) 
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(12) 

This can be shown explicitly for the case where the electron-phonon interaction is small so that it can be treated as 
a small perturbation, mixing the states. The intermediate state can be written as (/| =((»+!)„ f|, and 

<i|«f|«) 
<(«+!)„ »|er|n„«) = -; [<(»+!),. l|3C^|«,(t)-<(»+l)„||3C„|»,>«)]I 

<«l"|t) 
((»+l)„«|«r|n,>i)=-——[((«+!)„ j|3C^|nq,J)-((n+l)„Ä|aCe.p|«,)g)]. 

— BO), 

With 3C^p given by Eq. (4), and substituting the above expression into Eq. (11), one finds 

f«{e(«,j))(i/ii)c<dE»(«)„iiXtii»(«)Mi«){«is:*a-«*)»i»)-<fii:.(f'2*)>i«))3^/^), 
^ = [(ü)5-u«(,)

_i—(«(-^^-'^(ais+üJ«,,)""1-(WI+CJ,,)-']/*, 

(13) 

where f is the generalized force in Eq. (■*). The phonon 
wave is coupled to the laser and Stokes fields (Ej) and 
(Es) to give rise to the stimulated Raman und Brillouin 
effects. The wave equation for (E|) and (E^) is 

V«(El.5)+(w,,i
äel.s/csKE(.s) 

^-i^U/Wi.s*1-),   (14) 

where {¥t,sSL} ii obtained from the usual iterative pro- 
cedure in the densif   matrix formalism. In particular, 

(Ps^(R,0)=9ir«1(Q,(gR,0), (15) 

where 31 is the number of unit cells per unit volume. The 
Boltzmann factors pn" disappear in the nonlinear 
coupling terms of both Eq. (11) and Eq. (15). There- 
fore, the stimulated Raman gain, obtained from the 
solution of the coupled wave equations for (Es) and 
(Q,) would be independent of the average thermal 
excitations of phonons. 

For acoustic phonons the harmonic approximation on 
which the linear expression for the displacement opera- 
tor U is based, is nearly always valid. The effect of 
anharmonic terms may be taken into account as a 
damping term, caused by collisions between the acoustic 
waves. The temperature dependence of the stimulated 
Brillouin effect is entirely contained in the temperature 
dependence of the damping constant T. Even though the 
concept of elementary excitations breaks down at high 
temperature, the classical acoustic wave can still be 
described in the same manner, even in liquids. 

The situation is different for optical phonons. In this 
case the anharmonicity of the molecular vibrations 
limits the validity of the harmonic collective excitations 
to the low-temperature regime, where the probability to 
have an excitation at a particular localized site is small 
compared to unity. 

The dispersion law for optical phonons is very differ- 
ent from that of acoustic phonons. The contribution of 
the collective motion to the wavelength-dependent part 
of the energy is small and the damping is relatively 
large, ^«ü),r. Under these circumstances it is ap- 
propriate to consider the localized vibrational excitations 
of individual molecules.' Since the vibrations are 
strongly anharmonic, only the ground state and the first 

vibrational level need be considered. It Is a well-known 
result for this case of individual molecules that the 
Raman susceptibility is proportional to the population 
difference in these two states, poc—pi0- This temperature 
dependence through the Boltzmann factors does not 
appear in the calculation with collective elementar)' 
excitation waves, which is strictly valid only at absolute 
zero. The case of optical phonons derived for a lattice 
array of molecules with two vibrationai levels is analo- 
gous to the case of spin waves derived from a lattice of 
spins with 5=J. The representation by elementary 
excitations with boson characteristics is a low-tempera- 
ture approximation. 

The formalism of tl.s coupling of light with optical 
phonons may be taken over to the case of spin waves. 
The coupling of light with plasma waves has been 
discussed elsewhere." 

HI. COUPLING OF LIGHT WITH MAGNONS 

The electronic Hamiltonipn for a magnetic system 
consists of spin and orbital parts. The spin part, with 
exchange interaction among spins, forms the magnon 
system. The radiation field is treated classically and is 
again assumed to consist of two waves, Ei and Es- The 
total Hamiltonian is written as 

>"- —«V-irngnon , •"-ortiT^""-!! (16) 

The nuclear vibrational part is omitted in this section. 
The interaction Hamiltonian consists of spin-orbit, spin- 
radiation, and orbit-radiation interactions, 

3CiBl = 3C8-L+3Ci,,+3C8.r. (17) 

These interactions have the familiar bilinear form 

3Cu,= - E [«rmj-EBt+/jLm»HB»].       (18) 

Kg.,-— EZ/iS.,»-!!,,», 

'• N. Bloembergen and Y. R. Shen, Pby». Rev., 141. 298 (1966). 
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where X and ß are the spin-orbit coupling constant and 
the Bohr magneton, respectively. The electric and 
magnetic fields of the radiation at the Jth atom in the 
»nth unit ceil are designated by £m» and ff«!,. The terms 
lit- H and 2^S- H correspond to magnetic-dipole transi- 
tions. Javan and Winter first suggested the stimulated 
Raman maser action in a paramagnetic two-level spin 
system [compare Fig. l(a)j. In the optical spin Raman 
transitions, shown in Figs. 1(b) and 1(c), the inter- 
mediate states can be connected by the electric-dipole 
interaction er-E. The magnetic-dipole terms pLH and 
2/iS-H are negligible in comparison. The interaction 
Hamiltonian reduces in these cases to a form similar to 
the one in the previous section. The role of K*p is taken 
over by 3CB.L. 

The magnon Hamiltonian is 

SCnmiiioii11--  £   •^■»-ml'Smi-Si,,'»' —2;iHo- 23S»ik,   (19) 
m.iV m,i 

where J is the exchange coupling constant and Ht the dc 
magnetic field. In the harmonic approximation, 3CmMIIOI, 
can be quantized asu 

Xm^OB=Z K> (V%-H) • (20) 
*./ 

The spin component is expressed in terms of creation 
and annihilation operators a,/, av from the linearized 
Holstein-Primakoff transformation11 

5»6+= {Smi)x+i{Smb)^ (25»/A-)"1 E c{q,b,j)av exp(iq- R.) 

■L-^Cq.^exp^qR,), (21) 

(W5t{5»+1), 

The magnon modes w,y are obtained by solving the set of linearized Bloch equations of motion for 5„»+ for the 
magnetically inequivalent atoms in a unit cell," just as in the case of phonons. The number of magnon branches is 
of course equal to the number of magnetically inequivalent atoms in each unit cell. In the long-wavelength limit, 

«„»«„(IVH/aCOs». (22) 

In particular, when there is only one magnetic sublattice with one magnetic atom per unit cell, there is only one 
magnon branch with (i>s>- 2ßlh and ß=J3d', where o is the lattice constant. 

The magnon wave equation can now be derived from the density matrix formalism. Let p be the density matrix 
operator for the material system. We shall again assume only two states for the orbital part of each atom, {i\mh 
and (g|„» and {G\ =Xl'o.big\mb- Consider the equation for ((«+!)„ G|p|n„G), where («,| denotes the excitation 
of the magnon wavelength wave vector q=k(—k«. From the equation of motion forp and Eqs. (16)-(20), we 
find 

(.•---a),+lT)((«+l),,G|p'-'|H,,G)r-'"'--((«+l),,6-|[aC^r,p>>|«,,G)«r-', (23) 

where u)= UJ;—a-s. The lowest order nonvanishing result in the perturbation expansion of [SC^,,^!'"' gives 

■<(«+!)„ liE»(«?-fi«')»!/>(/1 E*(«r-6»)»I««.I> 
<(«+!)„ G|C3e,p]<->l«„C>-E 

.;L 

((»+!)„ liE»("-6i)»|/></|E*(«f««*)tl««,«) 
Ä(uJÄ+W/.,n) %■ -p(B+,j,

9)exp(iq.RB).  (24) 

llerp, llu- iiilcnncdhilr stale with ariiilrary mixing of spin and nrliital < lianu:t>:r is ilriinlcd by (/ |, and '•>/,„« iü llit 
fre(|Ufiuy scpaiiilion between (/| and {«,,j;|. Sim i .11'^, cannot change llicm (iipation rturnla'rufniagnMnit, K<|. (24) 
would vanish if the spin orbit interaction X«. i. were not present. When .11'H. I. is small, it can be Irealed as a jH.rtiirba 

"See, for example, C. KiUcl, Quantum Theory cjSrlids (John Wiley tt Son», Inc., New Vork, 1964). 
T. Holstein and H. Piimakoff, I'hys. Ki-v. S8, 1098 (1940). 

"See, ior example, U. Harris, Phy», Rev. Ii2. 2i98 (!9W). 
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tion hi mixing the states. With the intermediate state written as (/| =(«„«'1, one finds 

-{{n-t\)%,t\X*.t\nli,i'}{»i,i'\ei\ni,g) 
((« + !),. rkr!«„g) = I ,   { 

Au^B+n.r 

+: <(H + 1)„ «i«| (,.-t-l),i'K(n+l)„ i'lX^U^) 

tto>gn,i'(n+n 
I 

i' L 

((«+!),. g!«! («+i)„ «'KO'+i),.»'!^!.!«,,:) 
(25) 

Aü)ii»,r(iH-i) 

+■ 
((«+!)„ gl^VLln^'K«,,»'!«!«,,.') 

'W^n+D.i i 

Thc^e equations may apply for certain iron-group ions. If (g\ and (i| denote eigenstates in the crystalline field 
potential, the quenching of the orbital angulir momentum implies that the diagonal elements of the spin-orbit 
interaction -vanish 

(:{«+l)„t|3ta.l|«„«) = ((n4-l)„g|3C.s.1.|«„«) = (). 

This is different from the phonon case described by Eq. (12). 
The spin wave is defined as 

{S^R,t)) = (G | Tr E *a/25k)1'W(q,w) |G) exp(,q- R- tut). (26) 

Equation (23) then leads to the equal ion for the spin wave 

T 5 1 | i wd-iT-hSV (5,(R,/)> = ^s:E(S5*exp((q-R-wO, 
L dt -I 

^S^A-1 En,(«+l),Cs(pn,(!-p(n+!),0) , 

r.8=(iA){Kq,»)E/-V^(«+i) -IIS   . 
1 

«" + l)q,g!E^(«^^)6l!/K/|L^(gr)ts|n<,0^) 

(27) 

exp(jqR, 

Note the similarity of this expression and the corre- 
sponding Eq. (J I) for the phonon case. The expression 
in square brackets can be evaluated explicitly in the case 
of weak spin-orbit coupling with Eq. (25). It is seen to 
be proportional to (H-H),"

1
- This result has probably 

more general validity, as the term in square brackets 
connects two boson eigenstates differing by one unit of 
excitation. The factor Afl * in the expression asain arises 
as a normalization factor attached to the states ((H-|- 1),| 
and |f»,). The expression for Xa is independent of the 
p«,0 in this case by the same arguments which led to 
Eq. (11a) and, in fact Xa- f,a/h. The coupling constant 
is therefore independent of temperature in this harmonic 
approximatid. This result can only be expected to have 
validity for temperatures well below the Curie or Neel 
temperature. When T becomes an appreciable fraction 
of Tt higher order terms in the spin-wave variables can 
no longer be ignored in the Holstein-Primakoff trans- 
formation. This is the usual restriction on the validity 
of spin-wave theories. 

The spin wave is coupled to the two light waves E| 
and Es to give rise to the spin-Raman effect. The wave 
equation for the Stokes wave is 

VE^R^+Wts/^tsCR,/) 
 (4W/£s){P.Tvt(R,'))-    (28) 

The .ionlinear polarization in Eq. (28) can be found by 
the usual perturbation calculation, 

Vs"
L{R,t) = Viytt{S(qfi,))* expOq- R-tarf),    (29) 

where 31 is the number of unit spin cells per unit volume. 
The above derivation is very similar to that in the 

coupled photon-phonon case. If the spin-orbit coupling 
and the crystalline-field interaction are large, a pure spin 
wave of course does not exist. The formal derivation 
remains valid in this case, which is represented by 
Fig. 1(c). 

The gain coefficient for the stimulated spin Raman 
effect*'' can now be solved from the set of coupled wave 
equations (2/) and (28) with Xg replaced by it. For 
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infinite plane waves with linear poiurization in a 
medium of plane boundaries, the Stokes wave vector is 
found to be 

1 

(2 

-I Has) ;        ,   (30) 

where 

q'-k,'-k,,'    and    ks" = q". 

(31) 

The laser field Si is assumed to be a constant parameter 
and the unit vector £ is normal to the boundaries of the 
Raman cell. The imaginary part of ks is the gain or loss 
coefficient. The corresponding waves are given by 

Bs-LCs+ exp{tks+- r)+Cs_ expltks..- r)]«-'^', 

<5) = [CV exp(.q+T)+CsJ exp(iq_-r)>-■-•, 
Cs±/Cs±' = aUWAM^i/^s-^'+m). 

If the spin wave is highly damped, such that 

iD*/2ßq.'>+ms)*»2Vl™s*tli' IS,] i/cißg<>ks.ah, 

the square root in Eq, (30) can be expanded into a power 
series to give a gain coefficient 

Imijt.=as+Im 
i2Dl™5Vl<S«|2 

1     <?ksiD*h 
(32) 

The gain is a maximum when both linear momentum 
and energy matching conditions are satisfied, i.e., 

ki=ks0+Q<!   and   wj=ios-fw. 

This is indicated by the resonance point R in Fig. 2. 
Curves 2 and i in this figure are given by 

9»= [k,-ltg«I-[»,(«ll,-»sl/)'f+»s«s*j*-f>3/i 

for the forward ■'nd backward scattering, respectively. 
Here, «'s are the indices of refraction, and «'s the unit 
vectors. The Raman susceptibility corresponding to the 
Kamar gain of Eq. (32) assumes the very simple form,8 

XaM^^^Sflfs'/Ws, (33) 

where |g is given by Eq. (27) and has the (iimcnsion of 
an atomic polarizability, and I's is the damping con- 
stant for the spin wave. 

When the probability for spin excitation at a localized 
site is not very small compared to unity, this harmonic 
approximation of the spin waves loses its validity. In the 
opposite limit of very high  temperature, above the 

Fie. 2. Dispersion curves describing the spin Kaman effect. 
Curve 1 is the dispersion curve for an acoustic rnagnon wave. 
Curves 2 and 3 describe the linear-momentum and energy- 
matching condition given by 

f» Ik.-Mi =[u)(t»,]E.-»slj»)-?l'+u.-»^s»?']A' 
for the forward and backward Stokes scattering, respectively. The 
resonant points are denoted by R. 

Curie or Neel point, it is clearly more appropriate to 
consider the energy levels of localized spins. In this 
paramagnetic case, the Boltzmann factor pu0- pi0 ap- 
pears. The effect is proportional to the difference in 
population of the two magnetic levels concerned. If 
these levels form a Kramer's doublet, the temperature 
dependence is the same as the paramagnetic magneti- 
zation arising from these two levels. This suggests that 
the temperature dependence of the spin Raman transi- 
tions in a ferrcmagnet is similar to, although not 
necessarily identical to, the temperature dependence of 
the magnetisation M{T). 

TV. THE SPIN RAMAN EFFECT IN PARA-, 
FERRO-, FERRI-, AND ANTIFERRO- 

MAGNETIC MATERIALS 

The possibility of observing the Raman effect in 
magnetic systems was described in the introduction. 
Hough and Singh4 observed the spontaneous Raman 
transitions between two electronic levels of Pr'+ in a 
LaFj crystal. The Raman scattering due to spin excita- 
tions, however, has not yet been observed. 

Both the spontaneous and the stimulated Raman 
scattering depend on the coupling constant {s- The 
Raman transition probability increases as |fg| in- 
creases. As shown in Eq. (27), the magnitude of Is be- 
comes large if (1) the frequency u>i or ois (or bo;.h) 
approaches a resonance, and (2) the matrix elements are 
large. In some simple cases, there are also selection rules 
governing the Raman transitions. 

Consider lirst a parunmgnetic systetn with a small 
crystalline field, so that m is still a good magnetic 
quantum number. The localized spin model applies to 
this case. The Raman transition probability is pro- 
portional to 3l|{s|

!|6'll
i(pt,n-pi<,)./l". where fs is givers 

by Eq. (27) with the magnon slates replaced by the 
local paramagnetic slates. The degeneracy of the mag- 
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nelic states is of course lifted by the applied dc magnetic 
field In order to have the initial and the final magnetic 
states, (g| and \f\, in the normal Raman transiuons 
connected by the elertric-dipole operator, the magnetic 
quantum number must change by &m=tnf—m,=--1 or 2. 
With Am- 1 [ase Fig. l{b)3 the selection rule requires 
the laser polarization to have a circular component 
around, and the Stokes polarization to have a linear 
component along, tbe aiagneiic field, or vice versa. The 
exciting beam propagating along the magnetic field 
cannot excite Stokes scattering in the forward direction. 
In the spontaneous Raman emission, one observes 
preferably at right angles to the incoming beam. One 
w juld find a linearly polarized Stokes light if the ex- 
citing beam is propagating in  the direction of the 
magnetization, and a circularly polarized Stokes light if 
the exciting beam is propaguting in the direction per- 
pendicular to the magnetiialion. In the stimulated 
Raman efTect, it is best to have the laser and the Stokes 
parallel to each other. They may then propagate at 45° 
with respect to the magnetic field. The geometry used 
by Dennis and Tennanwald17 with the lassr beam at an 
angle to the Stoke- beam would also be po?sible. With 
Am~2, the selection rules require the polarizations of 
the laser and the Stokes to have components circulating 
in the same sense around the magnetic field. Again, the 
polarization prop-rties depend in an interesting way on 
the direction of the magnetization and on the directions 
of propagation of the two beams. If the crystalline field 
is so large that m is no longer a good quantum number, 
the above selection rules in general break down. 

Consider next a simple ferromagnet with a single 
sublattice, and assume the spin waves originating from 
individual ion states with pure magnetic quantum 
numbers »)=±J. Only the acoustic magnon branch 
exists. The states corresponding to zero- and one- 
magnon excitation can be written as 

(^HIK+K, 

(1,1 - (1AV)' JE((- |, n <+l 0 exp^q.R,), 
(34) 

where <-f |. and (— |, are the two spin states for the ith 
spir. Substituting Eq. (34) into Eq. (27), one finds that 
{s is nonvanisliing only if the product of matrix ele- 
ments of the type (g, - lerj/K/ierlg, -f) is ditierent 
from zero. This requires that the magnetic quantum 
numbers of the initial and the final states in the Raman 
transitions dilTer by Aw = 1. The selection rule governing 
the polariza*ion properties for the laser and the Stoices 
discussed prex.'^usly for the paramagnetic case again 
applies. If the crystalline field is large, the spin wave Is 
no longer composed of pure spin states. Then, in general, 
the selection rule breaks down. 

In ferromajznets with more than one sublattice, and 
in ferri- and antiferromagnets, the sublattices are 
coupled together through exchange coupling to give 
different magnon branches. The eigenmod^ and the 
eigenvectors are obtained from the couplei* Bloth equa- 
tions for the magnetizations of the ^ublattices. Assume 
a ferrite with two subtattices A and B, the corresponding 
spins being $A and Sg, respecrively, with pure spin 
states (± J | for each spin. Since the spins are pointing in 
opposite directions, we write SA,= SQ and 5*,= —5», 
and 5A±!i)i4=|±)ii and .iVii^HT)«. Also as- 
sume that the exchange coupling exists only between 
spins on different sublattices. The coupled Bloch equa- 
tions for SA* and Sa* yield the magnon exchange 
eigenfrequency, or optical magnon mode at q = 018 

tU0=2(i',S+ü)l,Jl-W^-tOofl)+i[(wM-|-i),B 

+o)(Iit+a>aß)'-4y,Mfa',£.]1/:, 
(ai.e-hw./OS (oitA+Uafi), (35) 

where u,A, o,/,, oia„, and ü}afi are the exchange and 
amsotropic freq-uencies for the two spins, respectively. 
The corresponding eigenmode is 

(ir^)/(5«+)=-ai/Q8, 

"2= {u.B+U,A-Uo}/D, 

^= 0^+(<J.fl+«.x-aio)2]"2. 

(36) 

The states with zero- and one-magnon excitation can be 
written as 

(37) 

/iLV H Dcnni5 an(i ^ E- Tann>;"WBW. Appi. Phya. Letters 5, 58 

(1,1 = (l/.V)'''£,[(«.(+, +|,-a2(-, - I,) 

Xn(-,+|.]exp(«q^), 

whe»e (db,±|> are the combned spin states for the 
spins in the jut unit cell. We hwe 6'^>| —\-},= | ++), 
and 5iiy|—+)/=! ),•■ A typical term in Eq. (2.> 
which contributes to the value of ^s «s 

«i<«, +, +1 («•^H-e'V) 1 /)(/1 ("V+ 'B') \s,-,+) 

x</|(«MH-«v;ig,-,+>,   (38) 

or with the superscripts + and Z interchanged. This 
again requires that the polarization of one beam, the 
lasar or the Stokes, has a ciicular component around and 
the polarization of the other beam has a linear com- 
ponent along the direction of magnetization. The situa 
tion here is very similar to that in the direct infrared 
excitation discussed by Tinkham for the case of rare- 
earth garnets.18 There, the absorption coefficient is 

11T. Nagamiya, K. Yosi.la, and R. Kubo, Advan. Phys. 4, 14 
(19551. 

»M. Tinkham, Phys. Rev. 124, 311 (196i); A. J. Siever» and 
M. Tinkham, ibid. 124, 321 (1961). 
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propurtiunal to the square of the matrix eltnjcnls 

-a^,-,-i(i/.4++3/^):g,-,+)]. 

Because of the antiparallel exchange coupling betv/eeu 
the two su'olattices, the two terms tend to cancel each 
other, so th.it the infrared absorption coemcient (and 
ihc Raman transition probability) becomes smaller 
when the exchange coupling increases relative to the 
anisotropy energy- The above analysis also applies to 
the case of antiferromagnets if one puts Sa^Si, 
uaA—um, and <i!tA~w,B The direct far-infrared excita- 
tion of r:i;:gnons in ihe e lUerrosnagnet FeFj has also 
been investigated by TI t. am.20 The eigenfrequencies 
and the eyerunodes given in Kqs- (35) and (36) should 
be slightly !;ii>diried in the presence of a dc applied 
magnetic fuid. If the crystalline laid is large, the 
selection rule governing the polarizations of the beams 
again breaks down. 

The magnitude of the spin Raman eftect may be 
estimated as follows. Comparison of Eqs. (15) and (27) 
shows that the t-.vo coupling constants { and fs are 
comparable in magnitude. In the case of optical pho- 
nons, £ would be rtw if the electron-phonon interaction 
were absent, il therefore suffers a reduction factor 
5C6-p/(vibration:il energy). In the case of magnons, fa 
would be zero if there were no spin-orbit interaction; the 
reduction factor isKi.s/(crystal field). The two coupling 
constants would be of the same order of magnitude if the 
matrix elements involved were the same. In practice, the 
Ultraviolet jscillator strength for organic molecules is 
close to 1, but for magnetic ions it is usually less than 
O.l.21 If the reduction factors and the damping constants 
for the two cases are approximately the Same, the spin 
Raman effect would be about 2 orders of magnitude 
smaller than the ordinary Raman process in liquids. The 
linewidth of the spin excitation at low temperatures 
seem to be comparable to the optical phonon linewidth 
which is idwuL 1 un"'. For example, the avitiferromag- 
netic resonance in FeFj has a width of 0.1 cm' 'at 10K 
which increases with temperature as T,.K The damping 
constant for the ferromagnetic spin excitations at room 
temperature, lies in the range Fs^lO9—10u sec-'. The 
narrowest ferromagnetic linewidth in a garnet is about 
0.5 G or Ps^ 10' sec1 at low temperatures.18 

An alternative way to estimate the order of magni- 
tude of the spin Raman effect is by comparison with the 
optical rotatory power of the magnetic system."23 

Physically, the spin Raman effect and the Faraday 
rotation are closely related magnetoopticnl effeits. The 
former is derivable from a thennodynarnical potential 
connected   with   the   coupling  between   light   W2 'es 

■ R. C. Ohlmann and M. Tinkham, Phys. Hc.v. 12J, 425 (1961). 
" Estimated from optical absorption data in rarc-catlh and iron- 

group ions. Sec, for example, B. R. Judd, Phys. R<;v. 127, 750 
(1962). 

» Y. R. Shen, Phys. Rev. 133, ASH (1964), 
»A. M. Clogston, J. Phys. Radium 20, 151 (1959). 

and a spin wave. The coupling eneigy per ion is 
|ftEj£s*(5{«~~«s))* Ihe Faraday rotation is derivable 
from a potential that gives the difference in coupling 
energy of a right-circular- and a left-circular-polarized 
light wave with a longitudinal dc magnetization. This 
time-averaged energy per ion is ^F.r{ j/'V is-|/ir|2} 
X{5(0)), where 2{F,, is the difference of the right and 
the left circular polarizabiiities. Both effects would 
vanish in the absence of spin-orbit coupling, and the 
coupling constants ia the two ^ases are quite similar. 
The constant, {s has the same order of magnitude as the 
circular polarizabilily, and so has (F»,, if the two 
circular polarizabiiities do not accidentally cancel each 
other. This is the case of some iron-group ions, such as 
Mn2t, etc. Stich a relationship was also noted by 
Persh-.. and coworkers.24 They were only concerned 
with light polarizations perpendicular to the magnetiza- 
tion. Thus, only Aw-0 or A»J = ±2 Raman transitions 
occur in their geometry For the excitation of magnetic 
spin w-aves, the Amidol transitions are significant. 
They require the presence of a light component parallel 
to the magnetization. The ratio {F.r/^B depends o 
course on the detailed geometry, crystal field splitting 
and mixing of the magnetic states. 

The rotary power at magnetic saturation is related »o 
the Faraday susceptibility by" 

0=47r9UF«iW«c) tad/cm, 

where 31 is the number of magnetic ions per cc and « is 
the index of refraction. For Eu,-+ the rotary power per 
ion has been determined experimentally.ss For light .\t 
the ruby wavelength one finds {r.r=5XI0~" esu. 

If we take S^SXIO22 in Eq. (33) and Ps^lO" sec"1 

for a typical ferromagnct, one finds X|um»a*B'ns!I0~14 

esu This is about two orders of magnitude smaller than 
the Raman susceptibility of several liquids in which 
stimulated Raman emission has been observed. 

In principle, all magnon branches can be excited 
through the Raman process. In a spin Raman laser, 
however, the mode with the highest gain would be 
dominant. The stimulated Raman process would also 
have to compete with the on^ary stimulated Raman 
and Hriilouin scattering. 

For a single magnetic lattice, the .acoustic ferromap- 
netic spin wave is of course the only magnon mode. It 
is interesting to compare the Raman excitation of this 
magnon mode with the Bril'ouin scattering. In both 
cases, the dispersion of the mode frequency is quite 
strong so that the Stokes radiation in different directions 
has different frequencies. The Stokes radiation in the 
spin Raman scattering can also go in the forward diroc- 
tion. If a strong dc magnetic field is applied, the mode 
frequency for q~0 is stiil different from zero. The fre- 
quency of the spin waves in the forward dir.-rtion would 

^ J. P. van dfrZiel, p. S. Perslian, and L. U. Malmstrom, Phvs. 
Kev. Letters 15, 190 (19t5). 

» Y. R. Sbcn and N. Bloembergen, Phys. Rev. 133, AS1S (1%4). 
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be low in small extern».' fields. Thennimentum rüatching 
condition becomes unimportant if the length of the 
sample / is so small that ql<\,As the uncertainty in the 
wave vector ^ l/l exceeds the wave vector q itself. 

Since stimulated Brillouin scattering has a threshold 
which is comparable to that of the ordinary Raman 
effect in liquids, it will often dominate the spin Raman 
effect. The dispersion law is more favorable for spin 
waves in the forward direction. Hats that the frequency 
of die magnon mode can also be tuned by the applied dc 
magnetic field. 

In using giant-pulse lasers, one may still use the 
steady-state solution of the coupled wave equations, if 
the group velocity (or/S1,2) is small. This is the case for 
oidinary Raman effect ar " shoi'id also be valid for 
optical spin waves (or exchange modes" md for acoustic 
spin waves in very high fields. Otherwise, the transient 
solution of the type developed by Kroll26 for the 
Brillouin case must be used 

The more interesting aspect of the spin Ramar. effect 
lies in the optical magnon branches. This include^ the 
antiferromagnetic spin waves. Polarization properties of 
the beams should be investigated to see whether the 
simple selection rules break down or not. Experiments 
on Pel"; with a Stokes shift of 55 cm "' would be quite 
interesting. The large Stokes shift makes optical detec- 
tion relatively easy. Various garnets are also suitable for 
investigation, especially yttrium iron garnet which is 
(juite transparent in the near infrared. 

In paramagnetic materials, the spin Raman effect 
arises from isolated ions. The Raman effect between two 
magmuc subleveis of thf ground state and the Raman 
effect between two electronic levels have thesa me 
nature. The latter process was found by Hougen and 
Singh4 in LaFj:?^. Their experimental results give 
assurance that the spin Raman process and the Brillouin 
process might have the same order of magnitude. 
Although the concentration of magnetic ions in para 
magnetic salts would be low, the iinewidlh could be as 
narrow as 10"1 or even lit4 cm^1, corresponding to a few 
gauss. The gain is proportional to the average popula- 
tion difference between the magnetic subleveis. If only 
these two subleveis are populated, the paramagnetic- 
spin Raman gain would be proportional to the magnet- 
ization. This effect could be observed in the forward 
direction and could be tuned by the dc magnetic field, as 
distinguished from the Brillouin effect. 

It appears worthwhile to search experimentally both 
for the spontaneous and the stimulated spin Raman 
effect. For the former, a gas laser focused into ciystals 
at low temperature would be appropriate to observo a 
scattered radiation with a small Stokes sh'ft,s7 For the 
latter, a resonant cavily with a different feedback factor 
for spin Stokes and Brillouinshifted radiation would be 
useful. 

" X. Kroll, >. Appl. Phys. 36, 34 (1965). 
«' K. V. Ciiiao and B. P. StoichtfT, J Opl Sue. Am. 54, 12S6 

(1964); T. C Daman, R. C. C. Lcits, and S. P. S. Purto, Phys. 
Rev. Leiten 11, 9 (1965). 

V. COUPLING OF LIGHT WITH 
PHONONS AND MAGNONS 

in discussing the spin Raman effect, we have neg- 
lected the term JU(L+2S)-H in the Hamütonian. This 
term would add to each electric-dipole matrix element a 
magnetic-dipole cemterpart. In addition, if the em 
mode at the magnon frequency is present, there is a 
direct coupling between this em wave and the spin 
wave. It is this direct coupling that gives rise to mag- 
netic resonance and far-infrared magnon excitation. We 
have also neglected the nuclear motion which is re- 
sponsible for the phonon waves. 

In principle, all waves existing in the medium can be 
coupled together cither linearly or nonlinearly. The 
coupling is, however, effective only when both linear 
momentum and energy matching ondhions are satis- 
fied. Consider the casj where five waves are present in 
the medium, the laser and the Stokes waves at wj and 
us, and the infrared (or micro-) wa^e, the acoustic 
magnon wave: and the acoustic phonon wave at w with 
u=ut—ua- The laser and the Stokes waves can be 
coupled to the phonon and the magnon wa'/es through 
the nonlinear Raman-type coupling, and to the infrared 
(or micro) wave through a nonlinear susceptibility of 
mixed electric and magnetic dipole character. This 
coupling constant is given by X2 or Xt in Eqs. (39) and 
(40). The magnon wave can be coupled linearly to the 
phonon wave through the magnetoelastic coupling,'8 

and to the infrared (or micro-) wave magnetic field 
through the magnetic-dipole interaction. The coupling 
constants Xs and X9 between the acoustic phonon and the 
infrared (or micro) wave is negligibly small since the 
waves cannot be matched simultaneously in energy and 
momentum. If the laser field is treated as a constant 
parameter, the remaining four waves are linearly 
coupled. The coupled wave equations can be written as 

V"Es+ {««W^Es» ^1Ei(5)*+^E1E1.*+a.3ElA,*, 

r-E/+ (u^.*A2)E/= Mi*Es+i,{.S)»+M,*, 
^A,*+ (P^/C.)A,*- i (pa/Ca)2a!f A.* (39) 

= 3.rEl*Es+>.8(5)*+^E,*) 

V-(5)*+(l/,d) (c-^o-iTs)^-;* 
= 5.1oE.*+X11Av*+J.I2E,*Es, 

where At denotes the acoustic vibrational wave. The 
coupling constants arc either related to physical con- 
stants or can be derived explicitly. 

5ii--!Ä(4)r«s,/t*)fst, 

(4 WA») 
(fr)„,(tT)no.Ot"i!(L+2S)X<j:U' 

X m .  

(40a) 

This coupling between three em waves in a medium 
with inversion symmetry is about 4 to 6 orders of 

»C. Kittci, Phys. Rev. UO, 836 (1958). 
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ir.iiyniiudc small« than the coupling parameter for the 
secon'.l-harn.jnic generation in piezoelectric crystals. 
The rnaLTieik-dipoie term r. akes this term negligibly 
smfttl compared to the other types of coupling, 

and 

J.j~ {-inu'J/c*) (— »Q ■ p). 1«*) 

{) is the phötoelastfc tensor, whose elements are of 
order unity 

X6= 0l[«t"=(L+2S)XÖ„'V/.56AV1,1,+.     (40c) 

This is the magtit-tic resonance term, that couphs the 
magaeÜe field at the resonance frequency to the .-nin 
wave. 

^-^(iq-pj/C,,-1. 
(4()d) 

Here p is the photoelastic tensor and C0 is the elastic 
iiinduius tensor; 

7.^iqbi/Ca. (4(.)e) 

This magnetoclasticcoupling isderived f.om theinter- 
■■ iion Hamütonian 

wher 
.IC-2Ä-C(V5)<r„+(5l,/6>1,.], 

*v.^{l/2}(dAjdz+dA./dy) 

cr«-(l/2)(a     dx+dAJdz) 

are the shear strain coim lents. The static magnetiza- 
tion is along the z direction. This is the only magneto- 
elastic coupling term in a cubic crystal which is linear in 
the spin variable. For a normal ferromagnet, the 
magnetoelastic constant bt has the magnitude of the 
order of 5X lO-' erg/cm».'8 

V-0, 

1 
Xio=—[>e1'l(L+2S)X4],-A.'+//3,      (40f) 

h 

Xi^iqbtSoO/hfi. 

In this eiastoinagnetic coupling constant ö is the volume 
of a unit cell. 

%ii*—U/*ß- (40g) 

Xi and Xu are the spin-light coupling constants de- 
scribed in Sec. III. Here, with £j= Ä/esp[jkr r-ü«»i<], a 
solution of the set of coupled equations (39) takes the 
form 

ivs~exp[iksr-tusO. /4n 

E,, Av, (.V)~exp[jq- t—iw!']. 

The complex wave vectors k.s and q—k,—ks* are ob- 
tained from the determinant 

■-(kf-iujls/c2) -XfS; -M, -XiSt 
->..:<$,* -f+fa-uo-ir^/ß — Xio -X,. 
-XiS,* -x, -9

2+Wt
1!€vVc2 0 

1     -\,s,* --x8 0 -92+(p«A.)(«2-«2a)r) 

= 0. (42) 

The imaginary part of ks gives the Stokes gain. 
It is quite difficult to find the solution of Eq. (42). 

However, the dispersion relations of the waves are such 
that in general only three waves can be effectively 
coupled, sirrc the infrareU wave Ev is alwpys decoupled 
from the aco istic wave Ar. 

Consider first the coupling of Es, Av., and (S). The 
problem is essentially the same as the problem of the 
Raman effect it; a polar medium" where the Stokes 
wave is coupled to the infrared and the optical phonon 
waves. That calculation can l,e carried over to the 
present case. Lei 

k.s   \i.s"](^K)i, 

k/- k..'-| f;', 

k/- k.s'4 q». 

(M»= w.sf.s /<■, 

m 

Wt arc inleresled in the solution AK^ksi", k,". In this 
cast En. (12) reduces to 

-i A,QA' i rinkci")~AMh'+r:/2W) 

+A,<-i^+ftM)-A1»-0l    (44) 

where 

Ai--X,X„|S,{V4*«,Vi 

A»-X^tjS,jV«5,V. 

A3=---X8Xn/4(9.ü)!, 

Am- - (X.X^n+XsX^,,)! 6MV^s."(g.ü)J. 

The solution of Eq. (44) is shown diagrammatically 
in Fig, ,1, Curves ! and 2 are the dis|)ersion curves 
for the acoustic wave A, and the acoustic spin wave 
(.V). The niomentum-onergy matching relation for Es, 

q^ (k,-kj|| =[a>((ii/lr-
,'.sis)^"+w«.s^.s(}",|/r, 

is given by curve 3. For small coupiing (onstants, the 
curves simply cross one another instead of forming 
gaps.28 Two waves can be coupled effectively o.Jy near 
the point wh' re the corresponding curves meet. Thus, 
in the parametric approximation stimulated Brillouin 

* No Kii\> apiK-ars at llie juiuliun of uitonoo and magnon 
dispersion curve?, if Ai«{p./c,iwri«/> '■ Sec Rcf  II. 
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and spin Raman effects will occur essentially inde- 
pendently near the points Äi and Ri, respectiveiy," 
where the corresponding stimulated gain would be 
maximum. The three waves can be effectivdy coupled 
together only when the three waves can be made to 
meet one another at a single point, (Ri). This can be 
done by selecting the Stokes direction or by tuning the 
magnon frequency with the applied dc magnetic field. 
At this point, the gain for the mixed stimulated Brillouin 
and spin Raman effect would be close to maximum. 
Thus, the magnon can be excited indirectly by the 
Brillouin effect or conversely, the acouftic wave can be 
excited indirectly by the spin Rama» effect. This has 
practical importance in exciting the .nagnon wave. 
Individually, the spin Raman effect may have a higher 
threshold than the Brillouin effect. However, by coupling 
the magnon waves to the acoustic waves, they can now 
be excited With a lower threshold via the Brillouin effect. 
The excited magnon frequency can be tuned by the dc 
magnetic field, but the direction of the Stokes radiation 
will also be changed. The exact solution for the case of 
three waves tightly coupled together should be obtained 
directly from Eq. (44). Further algebraic details may be 
found with the methods of Ref. 11. 

The coupling of Es, E„ and (.V) chn in principle be 
discussed in the same manner. The nonlinear coupling 
between Es and E, is often small in magnetic media 
which are nonpiezoelectric. The mixed spin and infrared 

Fio. 3, Dispersion curves describing the mixed spin Raman and 
Brillouin effect. Curves 1 and 2 are the dispersion curves for 
the acoustic phonon and the acoustic magnon waves. Curves 3 
and 3' satisfy the linear momentum and energy matching 
condition 

{or two different directions of Stokes scattering. The resonant 
K>ints R{ and fit denote almost pure Brillouin effect and spin 
tf-man effect, respectively. The resonant point Ä| corresponds to 

the mixed stimulated Brillouin and spin Raman effect. 

jy 
—-^ 

/% 

/ 

FIG. 4. Dispersion curves describing the simultaneous coupling 
of the acoustic magnon, the infrared, and the Stokes waves m an 
unisotropic medium. Curves 1 and i are the dispersion curves 
for the acoustic magnon and the infrared waves, respectively. 
Curve 3 describes the h'near energy and momci turn matching 
condition 

8»- |k,-ks| -[«((«lii-nsf^-y+wn^-jo]/* 

in a particular direction of scattering. The resonant point R 
denotes simultaneous coupling of the three waves. 

excitation is more easily excited through the spin 
Raman coupling. In isotropic media, the dispersion 
curves for the acoustic magnon and the infrared waves 
(curves 1 and 2, respectively, in Fig. 4) could not 
intersect the curve satisfying the linear momentum and 
energy matching relation at the same point. Therefore, 
the waves £s, £„ and (S) cannot be effectively coupled 
simultaneously. In anisotropic media with indices of 
refraction satisfying the inequality Mi<»s, this is how- 
ever, possible as indicated by the resonant point R in 
Fig. 4. The problem is similar to the Raman effect in 
polar media discussed by Loudon.10 

VI. CONCLUSION 

There is a close parallel between the coupling of light 
with optical phonons and the coupling of light with 
magnons. The spin Raman process appears to be two 
orders of magnitude smaller than the ordinary Raman 
process in liquids. Both the spontaneous and the stimu- 
lated spin Raman scattering may be observable in 
suitable magnetic substances, such as paramagnetic 
materials at low temperature, insulating antiferro- 
magnets or ferrimagnetic garnets. Magnetic excitations 
may also be induced by light through the stimulated 
Brillouin effect and magnetoelastic coupling. 

»R. Loudun, Proc. Phys. Soc. (London) A82, 393 (1963), 

» 
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Scattering of Light by Magaons* 

Y. K, SHBSV 

Physics Department, Vnkersity oj Cati/nrnia, Berkeley, California 

Scattering of light by magnons lias recently been predicted by calculations, and subsequently veri- 
fied by experiments. In this paper, theoretical aspects of the problem arc reviewed briefly. The spin- 
Raman effect is Created along the same line as ordinary Raman scaturing by phonons. The order of 
magnitude of one-magnon Raman scattering is estimated from the rotatory power of the magnetic 
ions. The effect is smaller in antiferromagnets because of opposite spins in different sublattices. In 
fcrrites and antiferromagnets, Uvo-magnon Raman scattering can occur through exdiange-type inter- 
action. Raman scattering by magneloelastic modes should also be observable. The possibility of con- 
structing a tunable light oscillator is discussed. 

I. INTRODUCTION 

ARAMAN process can be defined as a two-pliolon 
process in which one photon is absorbed and the 

other emitted, while the material system is either ex- 
uted (the Stokes process) or de-excited (the anii- 
Slok ■: process). Raman scattering has long been a 
useful tool for investigating the vibrational or phonon 
characteristic of a medium. In prnciple, it should be 
equally useful for investigating other kinds of localized 
or cooperative excitations in a medium, Raman scatter- 
ing in magnetic media was first suggested by Bass and 
Kaganov,1 and by Elliot and London,2 and has recently 
been treated in detail by Shen and Bloembergen.3 In 
this paper, light scattering by magnons is discussed. 

* This research was supported by the U.S. Office of " 'aval 
Research under Contract Nonr 3656(32). 

t Alfred P. Sloan i-cllow. 
1 F. G. Bass and I. Kaganov, Zh. likspcri.n. i Teor. I''.-. 37, 

1390 (1959) [Knglish transl.: Soviet I'hys,—JKT1' 10, 986 
(I960)]. 

«K. J. Klliot and R. Loudon, Phys. Letters 3, 189(19631. 
»Y. R. Sben and N, Bloembergen, Phys. Rev. 144,372 (1966). 

The problem is treated along the same line as that of 
scattering by phonons. Emphasis is on Raman scatter- 
ing in ferro-, ferri-, and antiferromagnets. Magnetic 
excitations in paramagnets can be treated in the limiting 
sense as localized spin waves,3 and will not be discussed. 
Here, it is shown that in MnFu and FeF», theoretical 
calculation agrees satisfactorily with experimental re- 
sults recently obtained by Fleury et at.* The spin-Raman 
effect could also be observed on a magnetoelastic mode. 
In this latter case, the Raman scattering cross section 
may be enhanced through the combined coupling of 
photons, phonons, and magnons. Since the magnon 
frequency can be tuned by temperature and by an 
applied magnetic field, this leads to the possibility of 
constructing a tunable light oscillator. 

II. SPIN RAMAN EFFECT IN FERROMAGNETS 

For a Stokes process in which the material system is 
excited from the initial state 11) to the final state |/) 

4 V. A. lluery, S. P. S. Porto, L. E. Chccsman, and If. J, 
Guggenheim, Phye. Rev, Letter« 17, 84 (1966). 
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b ' absorbisg s photon at frequency ua and emitting a photon at u„ the Roman transition probability per unii 
volume per unit time as obtained from the second-order perturbation calculation is given Hy 

(ft  (»- l)t0. («+ l)t. |  Y.t SZnfc*, CO.)! {j ("- »)*.■ "t- ) (£. ("- ^*M "»■■ !  Z* ^..''(ko, j^) I (. "Ao. "»■) A-=I: 

_ (/, ("-1)A.,, OHMk I ZtSC^Ck.^-u); Jj "to, (H+l)t.)(/, ^.i, (»+l)t. I ZlMlC/d^CO.)! i, H,Vi,Ht. 

A(W,+M/,) 

Pe = *.25 (w.) <Hl(fe»,/ (2ir) 3c, 

where «t,, and tit, are the initial numbers of photons in 
the incident (ko) and the scattered (k.) modes, («*, = () 
for spontaneous Raman scattering), N is the number 
of unit cells in the unit volume, j /) is the intermediate 
states of the material system, and g(a),), the line-shape 
function. The interaction between the radiation field 
and the bth atom in a unit eel' is denoted by the 
Hamiltonian SCtr*. In the electric-dipole approximation, 
it becomes 

.'fC„6(k,«) = -<rfEt(k,a)), (2) 

the sum over electrons in the atom being omitted. 
For one-phonon Stokes scattering process, one has 

tO=iC,«,)^nd|/)=iG>(«H-l),)with|G)=n'.l«)'., 
where | g)(, is the ground electronic stale of the bth 
atom, and H, is the number of phonons with a wave 
"<vtor q=kt.—k,. It L readily seen from Eq. (1) that 
A' would vanish if there were no electron-phonon inter- 
action in the system, since the Hamiltonian Ktr cannot 
connect slates with different phonon occupation num- 
bers.5 Electron-phonon interaction X,.P operates on both 
ground and excited electronic states and mixes states 
j »,) and |(H+i),(). Consequently, the transition prob- 
ability Wif no longer vanishes, but suffers a reduction 
factor of the order of | K^/Ä«, |2. 

A similar situation arises in the case of the onc- 
magnon Stokes process. Here, an cigenstate of the 
material system consists of spin and orbital parts. The 
spin part connected with the ground orbital state 
(which, for simplicity, is assumed to be quenched) is 
specified by the magnon occupation number. So, again, 
the initial and the final states can be written as | i) = 
IG", i,,,} and l/HG, («+!).) with iG^ILUV. 
where I g) is the ground orbital state of a magnetic ion 
and », is the number of magnons with wave vector 
q=ko—k, and frequency ue given by the magnon dis- 
persion relation for the magnetic medium. Al.io, since 
3Crr cannot change the magnon occupation number, the 
Raman transition probability in Eq. (1) would be zero, 
if there were no spin-orbit coupling in ground and 

6 Hm-, wv have oegtected the Harnilionian 3C,i for the inter- 
action between radiation fields and the lattice. Inclusion of 3C,i 
leads to two otbur mechanisms for enc-phonon Raman scattering. 
See R, Loudon, Troc. I'hya. Soc. (London) 82, 393 (1903). 

excited states. The tenn \L~S* in the spin-orbit inter- 
action 3C/,s mixes states | «,) and |(»»+1),), so that 
the transition probability Wi/ no longer vanishes, but 
suffers a reduction factor of the order of | ü£is/Vmt \-, 
where V„y, is the crystal field interaction.3 Bass and 
Kaganov2 suggested that the one-magnon Raman tran- 
sition could become allowed if only the magnetic-dipole 
interaction is included in 30,,, a» was first proposed by 
Winter and javan' for the microwave Raman proc ss 
in paramagnetic crystals. However, for visible fre- 
quencies, this mechanism leads to a Raman transition 
probability six to eight orders of magnitude smaller 
than the one induced by spin-orbit coupling. 

There is a definite selection rule governing the one- 
magnon Raman transitions. In order to compensate the 
change of magnetic quantum number Am— 1 due to the 
excitation of a magnon, the incident field should have a 
right circular polarization around, and the scattered 
Stokes field a linear polarization along the magnet»- 
zation, or vice versa. As a result, the Raman scattering 
depends in an interesting way on the relative directions 
of magnetization and propagation of the two beams. If 
the ground orbital stale is not completely quenched, 
and the crystal field is large, the above selection rule 
in general breaks down. 

The order of magnitude for the spin-Raman scatter- 
ing cross section can be ibtamed by comparing with 
the normal Raman scattering cross section in organic 
liquids using Eq. (1). First, the uv oscillator strength 
of electric-dipole transitions for organic molecules is 
close to 1, but is usually less than 0.1 for magnetic ions. 
Then the reduction factor | .1C,„'Tw, ]'- is about 1()^2 for 
molecules, and I Kcs/V^y, \: is about 10"2 to iQr* for 
magnetic ions. Therefore, at visible frequencies, the 
spin-Raman effect would be about 10"2 to 10"4 times 
smaller than the ordinary Kanvin effect in liquids. 
Magnetic ions with unquenched orbital states should 
have larger spin Raman effect. For ferrites and anti- 
ferromagnets, because of opposite spins or. different 
subhttices, the Raman scattering intensity may be 
reduced further (see Sec. III). 

A more accurate estimate of the spin Raman effect 

'I. M. Winter, J. Phys, Radium 19, 834 (1958); A. Javan, 
Hid., p. 836. 
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can often be ohlaiiud from the low-tempera lure optical 
rotatory power "I1 of individual magnetic ioris.'1 

I 

XU(i\er, I/)!'-'-1 (, | .r. |/)|--'.]    (,V) 

For quenched orbital states, av would be zero if there 
were no spin orbit coupling.7 Thus, at" also suffers a 
reduction factor of | .TC^.s V„v, \2. One sees readily from 
Eq. (1) that ctv has the same order of magnitude as 
| K VKin-l),, | £(«o)| «.,)<(«+Ik i £(«,}!«!.)] in 
the spin Raman effect. Consequently, the differential 
spin Raman scattering cross section is given by jfe/dß~ 
(avV) WJ- As an example, Eu^ in CaFj has a rotatory 
power with aK^oXlO-2* in the red. This would yield 
da/.mzzl.SyjO-3- cm2/(Eus+ ion){sr) which is about 
three orders of magnitude smaller than that of the 
992 cm"-1 vibrational mode of benzene.' Uio/dil= 
SJXIO-2« cm'vsr at 4880 Ä). Ferromagnetic Eu^ 
comp'unds could have oiÄälO"*1 in the visible' and 
hence df/dSr^lOr** cniv'sr. This anomalously large 
rotatory power and spin Raman effect of Eu** arise 
as a result of <..•„ approaching to/, in the resonant de- 
nominator. It is also interesting to note that G&t, 
being isoelectronic with Eu2+, h?.s nevertheless ex- 
tremely small rotatory power in the visible. This is 
because a'o is so ür awaN- from ui, that the set of excited 
Pj mulliplets can be considered as degenerate,'07 and 
hence the net effect of spin-orbit coupling on optical 
rotatory power frc-'i the degenerate multiplets is zero. 
The same argument should also apply to spin Raman 
eilest. 

Both the Faraday elect and the spin Raman effect 
can be described in terms of spin Hamiltonians. From 
Eq (1), with the perturbation of spin-orbit inter- 
action, we find 

Ä^ ((«+!)„ («-l)/!o, («+1)/-. 1 Ki«, i «„ «/.„, nt,), 

where the spin Hamiltonian for the Raman interaction 
is 

b 

+ ErM ESM ]+ adjoint,    (4) 

At being a coefficient independent of the spin .S' and 
the fields E. The spin Hamiltonian for the Faraday 
effect in the same magnetic material is found to be3-" 

b 
M2-l£«.-M|2].   (5) 

The coefficients A and li in Eqs. (4) and (5) have the 

' Y. R. Shcn, Phys. Kev. 133, ASH (1964). 
•J. G. Skinner and W. G. Nilscn, Annual \fcctinK cif the 

Optical Society of America in San Kra^cisco, 1966, Paper WE-ll. 
•J. C. Suits (private communication). 
"L. Rosenfeld, Z. Phvsik 57, 835 (1929). 
" P. S, Pershan, J. P. van der Ziel, and L. D. Malmstrom, 

Phys. Rev. 143, 574 (1966). 

same order of magiitude as af/S both vanishing i,\ 
the absence of spin-oibit couplinr.. Scicclion rules for 
the two effects eve seen explicitly from the expressions 
of the spin ilamiltonians. 

There are n magnon branches corresponding to n 
magnetic ions in a unit cell.'2 For each branch in the 
long-wavelength limit, one has 

V,=ü>"+#/-. (6) 

Here, uP and ß depend upon magnetizations, anisotropy, 
and the applied magnetic field on different sublattices. 
In general, ut decreases as the magnetizations and 
anisotropy energy decrease. With increasing temper- 
ature, both magnetizations and anisotropy decrease; 
one would then lind that the Stokes frequency shifts 
to the short-wavelength side. Measurements of a), could 
yield information about exchange coupling between 
magnetic ions and the anisotropy field in the lattice. 

At finite temperatures, the Integrated Stokes scatter- 
ing intensity should be propo.tional to («,(7') )-fl, 
while the integrated anti-Stokes scattering intensity 
should be proportional to («,(T)). Thus, the anti- 
Stokes scattering intensity would grow with increasing 
temperature, but the Stokes .scattering intensity would 
remain more or less unchanged until the thermal exci- 
tations of magnons become so high that («,) is a non- 
negligible fraction of 1. The linewidth, as determined 
by the relaxation of magnon excitations, is also a strong 
function of temperature. While no satisfactory theory 
exists for the magnon relaxation, the linewidth can 
possibly be accounted for by fluctuations in the mo- 
lecular field.13 Generally, the linewidth would increase 
strongly with temperature. The magnon spectrum dis- 
appears evirntually as temperature approaches the Curie 
point Above the Curie temperature Raman scattering 
from Individual paramagnetic ions results. 

In principle, the two-magnon Raman scattering proc- 
ess, analogous to two-phonon Raman scattering, also 
exists. For ferromagnets with quenched orbital states, 
spin-orbit coupling has to be used twice in the pertur- 
bation in order to change the magnon occupation num- 
ber by 2. The corresponding twomagnon Raman effect 
suffers a reduction factor of | .TC/.s/F,.,,, |4. For ferrites 
and antiferron.agnets, twomagnon Raman scattering 
can in fact occur without the help of spin-orbit coupling, 
as we shall discuss in the following section. 

III. SPIN RAMAN EFFECT IN 
ANTIFERROMAGNETS 

Recently, Fleury et a/.1 reported observation of 
Raman scattering by magnons in antiferromagnets FeFs 
and MnFj. In this section, we shall show that their 
results agree satisfactorily with theoretical calculation. 

Consider a ferrite with two sublattices A  and B. 

»See, for example, R. Harris, Phvs. Rev. 132, 2,?98 (HWY- 
UF. M. Johnson and A. U. Nethercot, Pins. Rev. 114, 70S 

(1959), 
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Assume that eschaap coupling easts fffily between spins on different sublattices, Thio gives rise to two tuagtion 
branches. The optical magnon nunic f.t (/=0 is14 

where w,.,, UV/J., W.J.I, and a'uij are the exchange and anisotropic frequencies for spins in the two stiUattictS, The 
zero and liie one-magnon states are5 

!o,)=ni--+).. 
i 

j le>=(t/^)1'3i;C(Mii+,+)r-«!-.-)i)n i -, +),]cxp(/q.R,), 

(8) 

| sH, =L }i being the spin states for the_;th unit cell. The spin operators in fenites are defined as SAC" SI, SB»= — S 
and .S'.^ j ::F).i = l ± ).4 and Sg* | ±)«=| T )«. From Eq. (D, with the help of Eqs. (4) and (8), we lind 

Here, ,!.! and .'t/,- have the same order of magnitude 
as the Faraday coefficients af/S for ions in the two 
sublattices. T!:c selection rule manifests itself in Eq. 
(9). Similar to the case of direct infrared excitation,'h 

the one-magi.on Raman transition probability for fer- 
rites suffers a reduction factor of 

\?{tilAA-H*AB)/iAA + AlW 

as compared with the case where spins on the two sub- 
lattices were aligned in the same Erection. 

For antiferromagncts FeF«, MnF2, etc., we have 
A A — A «~aF- Then, the one-magnon differential Raman 
scattering cross section is J(T/(ft2^(Mi—^^(kV/c4)^'"'- 
In the case of FeFi, the exchange field stjt and the 
anisolrops' field u>Jy, with y=ge/2mc. are 541) and 
2tX) kOe respectively.11 One gets, from Eq. (8), MI = 

0.9()5 and Mä= 0.406. If we assume that the rotatory 
power of Fe2* is the same as that of Eu2+, then the 
one-magnon Raman scattering :n FeFj ' ^ da/iKlr^ 
6X10"34 cmVsr, which is about lour orders of magnitude 
smaller than that of ben/.ene, and agrees with experi- 
mental observation.4 It should be noticed that if the 
anisolropy field were zero, u.. would be equal to fij and 
the Raman effect would ni.-appeir. In MnF«, the ani- 
solropy fa-id av/7=7.2 kOe is indeed small compared 
with the exchange field u>, ■> = 392 kOe." We find MI= 

0.771 and fi2=0.637. In addition, the rotatory power 
of Mn24 is perhaps at least one order of magnitude 
smaller «han that of Eu-'+. Therefore, (fo/uSKSXlo"38 

cm3/sr. Experimentally, no one-magnon Raman scatter- 
ing ha? been observed.4 

The Raman scattering experiments also show that 
the magnon mode o-V" decreases with increasing temper- 

"T. Nagairiva, K. Vn^iHa, ami R. Kubo, Advan. Phys. 4 
!4 ('.955). 

15 M. Tinkham, I'hys. Rev. 124, 311 {I%1). 
»R.  C. Ohlmann and M. Tinkham, I'hys. Rev. 123, 425 

(19Ö1). 
" J. Kanamori and K. Minatono, J. I'bj-s. Soc. Japan 17, 

1759 (1962). 

ature. The results agree qimlilalively with the calcu- 
lation by Ohlmann and Tinkham""' using the mo- 
lecular-li .-Id approximation. They also found a TA de- 
pendence of t'le linewidlh of the magnon mode. Broad- 
ening of she Stokes component ^ith temperature has 
indeed been observed,4 uithough the JT

4
 dependence has 

not been checked carefully. The peak of the Stokes 
component should be inversely proportional to the 
linewidth. The anti-Stokes component was observed at 
temperatures above 30°. 

With an external magnetic field // along the preferred 
axis, the degeneracy of the magnon mode is lifl"d" 

w,(//) =--«,,(0) i-j 7/+0(//2). (TO) 

The splitting is about 4 cm-1 for //=20 kOe. This 
should he observable in Raman scattering at rufficiently 
low temperature. 

Fleury et a/.4 also reported the ob:crvation of two- 
magnon Raman scattering in FeFz and MnFs. The 
two-magnon lines appear to be somewhat more intense 
than the one-magnon line in FeFj. This eliminates the 
possibility that they arise as a result of second-order 
perturbation of spm-orbit interaction on the stater. 
In lad, exchange-type interaction between magnetic 
ions on opposite sublaliices is possibly responsible for 
the two-magnon Raman scattering as suggested by 
London.131 The same mechanism has been used to 
explain the magnon side band of optical absorption 
lines21 arid the two-magnon infrared absorption." Here, 
the exchange type interactior   V„n= J^S^S^ be- 

»T. DisucH, rhvs. Rev. Ill, 1063 (1958). S. Fonor, Phvs. 
Rev. 107,683 (1957). 

'•C Kidcl, Quantum Theory of Settdt (John Wilcv & Sem, 
Inc., New York, 1963). 

a R, t-uudim fun|>utilished'). 
"R. L. Grctnc, ]). Ü. Se,., W. M. Yen, A. T,. Srhawlow, 

and R. M. While, Phv5, Rev. Utters 15,656 {1965); P. G. Russe), 
D. S. McCIurc, "ind j. W. Stout, ibid. 16, 176 (1966). 

a Y. Tanaljc, T. iluriva, and S. Su^ano, Phvs. Rev. Lel.cr? 
15, 1023 «1965). J. VV. HaUcy and I. Silver», wd, p. 654; S. J. 
Allen, R. ümdon- and P. L. Richards, ibid. 16, 463 (1^66). 
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twet-n ions m and n connects the states | gm, — ; /„, + ) 
and | im, +; g„, — ) and creates two magnons by (lippira; 
the spins on both ions simultaneously. The corresponr'- 
ing matrix element product for the Raman transitions is 

(?,.„~;«,.,+| «■„]&„,-;?„,+) 

X (?„„ —; in, +! V„,„ 1 /„,, +;.?-., - ) 

X (/„„ -r; g», -' et» 1 g«, -f; gn, - ). 

More generally, regardless of the detailed mechanisms, 
one r-n derive a spin Hamiltonian for the two-magnon 
Raman transitions 

3Ci„t= D (EJ^-Amn-E,*^)lS^S,S) +adioint. 

(ID 

Transformation of the above expression into momentum 
space yields 

.-!€„„= E (E'-'1-A./E*1^)5„+.9s,^r+adjoint,      f 12) 

where we assume that the wave vectors of the radiation 
fields are negligible compared with </. Thus, the two 
magnons must have approximately equal and opposite 
wave vectors ±q, and the corresponding Stokes fre- 
quency isc<;,=a,i—2&.',. Not all components of A in Eqs. 
(11) and (12) arc independent MIHC the spin Hamil- 
tonian must be invariant under the operations of the 
crystal symmetry group. The two-magnon Raman spec- 
trum can then be calculated if bo'.h A and the magnon 
density of states are known. Matching of the theoretical 
curve to the experimental spectrum yields information 
about the magnitudes of A and the exchange coupling 
Vm* between spins. A similar approach was used by 
Allen, Loudon. and Richards- to interpret the observed 
two-magnon absorption spectrum. Thus, London was 
able to explain the observed two-magnon Raman 
spectra in FeFj and MnFs.® There are two peaks in 
both spectra.21 The one at higher frequency arises 
because of the singularity in the magnon density of 
states at the center of the (100) fa<e in the Brillouin 
zone. It has a selection rule which requires both the 
laser and the Stokes polarbations perpendicular to the 
f axis (or z axis), but at right angles to each other,"1 

The one at lower frequency arises because of the singu- 
brily in the magnon density of elates at the (111) 
corner of the Hrillouin zone. The associated selection 
rule requires the laser polarization parallel and the 
Stokes polarization perpendicular to the c axis, or vice 
versa,2' 

The intensity ratio of two-magnon to one-magnon 
Raman scattering is 

](«^n/2^)/(XL.S/Fery.M(ii-^l2, 
54 P. A. FIcury and S, P, S. Porto, Annual Meeting of the O),- 

tical Society o! America in San Francisco, 1966, Paper WE-17. 

where « is the number of nearest neighbors. For FeFi, 
(BIV^WIAS), 5=2, [XL-S/FsmM/lO, and 
hence the intensity ratio is of the order of 1, as ob- 
served experimentally. \ similar result was also found 
by London.20 

With an external magnetic field along the preferred 
axis, the degeneracy of the magnon branch is littco as 
given by Eq. (10). Since the two-magnon Raiuai' 
process we have described preserves die total spin 
magnetization along the field, the two magnons must 
come from the two Zeeman branches respectively.21 

Thus, to the lowest order in //, there would be no 
magnetic field effect on the two-magnon Raman spec- 
trum since «,(#) +c-_,(//) = loijO) P 

The two-magnon Raman spectrum indicates that 
the magnon frequencies at the edges of the Brillouin 
zone also decrease with increasing temperature. Silvera 
and Hallcv25 have calculated the temperature variation 
of u!s(r), using the molecular field approximation of 
Ohlmann and Tinkham.16 Their results agree quali- 
tatively with experiments. From the above discussion, 
it is seen that the observed Raman spectra in FeFj 
and MnF» can indeed be described satisfactorily by 
the theory. 

17. RAMAN SCATTERING FROM 
MAGNETOELASTIC MODES 

In a magnetic crystal, the spin wave can also couple 
linearly with the phonon wave thnugh the magneto- 
elastic coupling.2' This happens if tne dispersion curves 
of magnons and phonons wou'd intersect (Fig. 1). 
The coupling is most effective in the region near the 
intersection. If the coupling energy is large compared 
with the linewidth, there would be a sp'itting of the 

FlC. 1, Dispersion curves describing spin Raman scattering 
from magnetüdastie modes. The dashed and the solid curves 
rorrcspond to the cases of small and large magnetoelastic coupling 
respectively. The heavy line describes the encrgv and momentum 
matching condition J=|lt8~k, \ = [i2>t>(n^kt-nJt,)-^+wn,k,'q^ 'c. 
The intersecting points Ri, Ri, and /fi denote the magneto- 
clastic modes contributing to the Raman scattering. 

21 Similar situation arises in the magnon side band of optical 
absorption and in the two-magnon infrared absorption. R. M. 
White (private communications). 

» I. Silvera and W. Halley, Phvs Rev. 149, 415 (1966). 
» C. Kittel, Pbys. Rev. 110, 836 (1958). 
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dispersion curves at the intiTsection. (Fiff. 1). Other- 
wise, no splitting exists. A new mode, with mixed 
character of magnons and phonons, now arises because 
of the coupling. This is known as the magnetoelastic 
mode. Both the dispersion curves and the amount of 
mixture in the magnetoelastic mode can be determined 
by solving the coupled equations of motion for magnons 
and phonons. Thus, the state corresponding to a single 
excitation of the magnetoelastic mode is 

| l,)m,=ai | l,)„hmio>,+as 1 !,)„ (13) 

where | ai !J-H «2 !4= I. 

Raman scattering by a magnetoelastic mode would 
certainly occur if the energy and momentum matching 
conditions can be satisfied, 

q= 1 ko-k. \=Z<j}»(ttJcB~nJc.) -q-f ^«i.-qj/c. 

From Eqs. (1) and ('3), this Raman transition prob- 
ability is given by 

Wv~ ilv/m | Ol^A-h^Mi fpn, (14) 

where K^ and Kmv are the Raman scattering ampli- 
tudes by rne phonon and one magnon at toq, respec- 
tively. If ' on |sgj at j, and | Kph |»| Kmn |, then Wtfa 
(2r/n)N l a-^ph |V«. Therefore, the probability of ex- 
citing a maguon through the Raman process can be 
enhanced by the magnetoelastic coupling. This is par- 
ticularly important in the consideration of generating 
magnon waves by the stimulated Raman process.' 

Different magnetoelastic modes are excited by Stokes 
scattering at different angles. Since ai/aj is different 
for different modes, it is interesting to see how the 
intensity and the polarization property of the Stokes 
change as the angle changes. The results could yield 
information about the magnetoelastic coupling in the 
crystal. 

Since the magnon frequency varies with temperature 
T and the external magnetic field H, the intersection 
of the dispersion curves of phonons and magnons can 
be tuned over a limited range by adjusting T and H. 
The Stokes scattering will be changed correspondingly 
in a predictable way. 

V. TUNABLE SPIN RAMAN OSCILLATOR 

We have seen in the preceding sections that the 
Stokes frequency in the one-magnon Raman scattering 

can be tuned by temperature, by applied magnet it- 
field, or by angle of scattering. Thus, a tunable light 
oscillator could be achieved if the Raman process can 
be made into a stimulated one. 

The stimulated Raman gain can be calculated from 
the Rarnan transition probability IF,/.' In particular, 
if the magnon damping is sufficiently strong, the gain 
is directly proportional to Wi/P* 

G(u,) = (^/fcifcW5)! Eo !
2
.Y(,/<T'r/insfaü.    (IS) 

With /V-SXIO81 cm-1, Ar/dQ-lO-" cm2, I /^ 1 = 450 
esi" for a iOO-MW/cm8 laser beam, and a magnon 
liuewidth of 5X10'° sec-', the maximum gain at reso- 
nance is Gma, = 2.5XlO~:! cm-1. Stimulated Raman 
scattering can occur if (7„UIS is larger than the Stokes 
loss per centimeter in the medium, This gain G,m* is 
about two orders of magnitude smaller than that of 
benzene. However, the scattering cross section in some 
magnetic materials can be much larger, or the linewidth 
smaller. The gain can also be enhanced by the magneto- 
elastic coupling as we mentioned earlier. 

Stimulated Raman scattering has been observed in 
benzene in a cell with or without reflecting end mirrors. 
In the fonner case, the complication of self-focusing-8 

could be avoided. For the spin Raman effect, one would 
also expect to see stimulated scattering in such a 
resonant cavity if the laser intenr'y is sufficiently high 
and the loss in the medium sufficiently low. The laser 
and the Stokes radiation are usually made parallel to 
each other to achieve the maximum interaction length. 
However, sometimes it is more advantageous to have 
the laser at an angle to the Stokes radiation. Then, 
the cavity geometry of Dennis and Tannenwald-"9 should 
be used. This applies to the case of Raman scattering 
by the magnetoelastic modes. Here in order to obtain 
the maximum gain one would like to have the Stokes 
radiation in the direction corresponding to a mode 
with maximum phonon-magnon coupling. This di- 
rection changes as the mode frequency is tuned by 
either the temperature or the external magnetic field. 
The tuning range of such a light oscillator is about a 
few reciprocal centimeters. 

"Y. R. Shen and K. Blocmbergen, Phvs. Rev. 137, A1787 
(1965), R. W. Hcllwarth, ihid. 130, 1850 (1963). 

* Sec, for example, E. Garmirc, R. Y. Chiao, ami C. It. Tmvncs, 
Phys. Rev. Letters 16, 347 (1966). 

"I, H. Dennis and 1'. E. Tannenwald, Appl. Phys, Letters 
S, 58 (19(H). 
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Nonlinear interaction of light with matter is described from the quantum-statistical (mint of view. The 
cases of two-photon absorption, Xaman transition, sum-frequency generation, parametric amplification, 
and incoherent scattering are discussed. It is shown that the nonlinear optical effects depend Strongly on the 
statistical properties of the light fields. The rale of nonlinear absorption, generation, and amplification is 
ttigher for chaotic than for coherent, and also higher for multimode than for single-mode pump fields. Meas- 
urements of the statistics of the output fields may yield information about the statistics of the input fields 
and the properties of the medium. 

I. INTRODUCTION 

THE (juantum statistical properties of light from 
various sources have recently been extensively 

investigated.1'2 However, the question whether inter 
action of light with matter would change statistical 
properties of light fields has seldom been raised. The 
purpose of this paper is to extend the quantum- 
statiitical description to the case ol light fields after 
interacting with a medium. Emphasis is on the effect 
of nonlinear interaction of light with thfl medi ..rn. 

It is usually assumed in tne literature that« atistital 
properties of a light beam remain unchanged .n travers- 
ing a medium if the response of the medium to the light 
fields is linear. This assumption is certainly a valid one 
for a nonabsorbing medium, since the linear interaction 
of light with the medium cannot disturb the probability 
distribution of photons in their number states (if the 
disturbance due to incoherent scattering can be 
neglected. See Sec. HI). Only their spatial distribution 
is changed through the interaction. Let the vector 
potential be written in the usual form1 

A(r,/)=ci:(2ff//W)"2 

* 

X(ö»Ui(r)e.vp(/W)+ai,Ut*(r)exp(-to)4/)),   (1) 

where a1 and a arc the creation and the annihilation 
operators, respectively, for the ki\\ mode. (The sub- 
indices indicating the polarizaiion of the fields are being 
omitted.) The spatial function Ut(r) is a normalized 
eigenfunction of the differential equation 

CVH«*s**(r)A1]nt(r) = 0> (2) 

where ««(r) is the linear dielectric constant at frequency 

• Research was supiwrted by the ü. S. üflkc of Naval Research 
under Contract Nonr 3656(32). Preliminary results of this paper 
were reported in the .Second Rochester Conference on Coherence 
and (Juantum Optics, Rochester, New Vork, J^".c, 1966. 

t Alfred P. Sloan Research l-'cllow. 
1 R. Glauber, Qujnlum Oplits and /'leclroHUs, edited by C. 

»eWitt el at. (Gordon and Hreach Skicncc Publishers, Inc., New 
Vnrk. 1965). 

1 See, for example. Abstracts on Second Rnchesier Conference 
on Cohcreiicc and Ooaniiini Optics, Rocheflcr (unpublished). 

3 See, for example, W. Heitlcr, Quanium Thtory of Radiatim 
iCIarendon Press, Oxford, England, 195-0, P- 54. 

Wi.4 From Stum-Louivelle theory, the orthonormality 
condition gives 

/ 
(«te,)"«ut(r)u.' -«* 0) 

Then, the Hamiitonian of the fields in the presence of 
the linear nonabsorbing medium reduces to the familiar 
lorm 

3C=2:ft«t{a*'at+i). 
k 

(4) 

Thus, the photon statistics of the fields is not changed 
except that the spatial distribution, described by 
at(r), is now different from the vacuum case. 

Tliis is not quite true if the medium is lossy. An 
obvious example is the case where originally there are 
exactly M* photons present in such a medium. After 
the absorption has been «witched on for a finite length 
of time, the photon system has finite probabilities in 
the occupation number states («t), | («—1)»), | (»—2)t), 
etc. The statistical properties of the photon system have 
clearly been changed. Assume that the medium has an 
dectric-dipole transition between atomic states {■/'») 
and j/'i) with frequency sej-. ration w«, which coincides 
with the photon frequency of the *th mode. The single- 
photon absorption can be described by the interaction 
Hamiitonian 

Kfct-j: {&uku%f~Kii>tfeiifrf*iPKiä\.    (5) 
i 

Here, CM, cu, ci,*, and ct? are creation and annihilation 
operators for the ith atom in states 1 and 2, respectively. 
{is the electric-dipole matrix element for the transition. 
The positive-frequency part of the electric field at the 
ith atom is given by 

Ek*Kti)='Et
<->(r<y=ii2*fmyi,Ui*(rtW.   (b) 

In the interaction representation, the equation of 

4 Fn geteral the coherent linear response of a medium to the 
fields can lie dcscrilied completely by a generalised linear dielectric 
tetaattMi see Y. R. Slum, I'hys. Kev. 133, AMI (1964). In this 
pa|)er, we shall assume that c«(r) is a scalar, and that ail fields arc 
linearly polarized. 
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motion for the density matrix p of the composite system 
is 

ihdp/dt=lXiai{t),p{t}l- (7) 

Iteration of p for small increment of / in the above 
equation gives8 

3p(/o+/)/d/=(l/jA)[3Clnl(/(,+/),p(^)] 

+(-i/W    tr.Uh+t), 
J tt 

X[3Cint(/'))p(/o)]>/('+' (8) 

We now assume that the therm;tl equilibrium of the 
atonrc sjstem is not disturbed by photon fields. The 
density matrix can then be written as p(0 = Pf(0 
XlLp^.CO). where pp and p^. arc density matrix 
operators for the photon system and for the ith atom, 
respectively. This is known as the irreversible approxi- 
mation,' We have, with the same approximation as 
used in the ordinary time dependent perturbation 
calculation,'-7 namely, Ä/|3^int|>'»J/(linewidth), 

W^=Tr„(3p/aO 
= -/SC(at

+atp, -2akprat
,+prat1ak)piA

0 

+ {dkajpr- 2a*tpf a*+Pf fl*<I^t)PlM,].   (9) 

where 

^=r«*Ul2lu*(ri)|1g(Wt),4A 

Here g(«*) is the line shape function, A'(') is the density 
of atoms at the position r, and pM

0 and PJA
0
 are the 

thermal populations f-r the two atomic states. The 
integration extends over the volume of the medium. 
The constant ß is related to the absorption coefficient. 
If p?(/) is known, statistical properties of the fields, 
such as temporal and spatial coherence, can roadily be 
determined. From Eq. (9), one obtains 

d<«*)/a/=-ß(pI.1''-pM»)(at)) 

K^a>)/dt=-2ß{pXAo-piA%a^ak)+2ßptA\   (10) 

The last ter in the above equation corresponds to 
spontaneous emission. 

Equation (9) governs the change of statistical prop- 
erties of the photoi system in the single-photon 
absorption procea. In particular, at zero temperature, 
if initially the photon system is in a coherent state,' 

' C. P. Sliehter, Principles of Magnelk Jiesonatue (Harper anil 
Kow Publisher» Inc., New York, l&tt), p. 127. 

• F. Bloch, Phys. Kev, 102, 104 (1956). 
' See, for example, I.. I. ShiR, Quantum Meclietiti (McUrew- 

Kill Book Company, Inc., New York, 195S), p. 189. 

pF{k)= \ait){ak\, then it is easily shown that 

pr(/o+A/)= {E [1-/3M"»- Kl2)]^2"',«*!)"1 

xexpC-il«*!2)!«*)}!:^! 

X[l-|3A/(wi-|all
1)(at

^"'V»u!)", 

Xexp(-i|at|
2)} —> |aiexp(-j8d/) 

X<atexp(-/3A/)| ; 

prih+t)** I«* expC-jSOXa* exp(-/30l ■ (11) 

This shows that a coherent photon system remains 
coherent although the field amplitude decreases ex- 
ponentially with time. More generally, if the initial 
photon field can be described by the P representation,1 

PJK/O)= /rfsatP(a*)|cr*)<«*l. 

one would get 

PA-CO+O = j d'atPia,,) |ot exp(-i3/)) 

X^exp(-^)1.   (12) 

The statistical properties o< ..he fields are being changed 
in a rather trivial way, since it is simply a translation 
of the distribution /"(a*) in the a* space. 

No such simple solution exists if the equilibrium tem- 
perature of the atomic system is finite, since the spon- 
taneous emission now comes into play. Consequently, 
the coherent properties of a beam will be disturbed in 
passing through the absorbing medium. The disturb- 
ance is, of course, small if the spontaneous emission 
process can be neglected in comparison with either the 
stimulated absorption or emission. This is certainly 
true for light beams in a me-Jium at room temperature. 

The same approach can be applied to the case of 
multiphoton transitions. Again, since the photon dis- 
tribution can be disturbed by the transitions, statistical 
properties of the photon system are changed. The case 
of two-photon transitions, which includes Raman 
transitions, will be discussed in Sec. II. In general, 
even if the medium is not lossy, statistical properties 
of light are changed by nonlinear interaction of light 
with a medium, although the disturbance might be 
small for weak interaction. The nonlinear interaction 
couples different photon modes and leads to energy 
transfer between the modes. Photons in some modes 
may be annihilated, while those in other modes created, 
and hence the photon distribution is disturbed. Often- 
times the rtk+e of energy transfer between the modes 
depends on th-.^ statistical properties of the light fields, 
usually higher for chaotic than for coherent sources. 

For investigation of properties of a medium, in- 
coherent scattering has long been a useful tool. Statistics 



Q U A N T U M    S T A T 1 S T 1 C S   O F    N O N L 1 N KAR   Ü I' T I C S 923 

is particularly important in this case for analyzing the 
results of experiments. In Sec. Ill, linear and nonlinear 
incoherent scattering are discussed. As is expected, the 
scattered radiation depends on the statistical nature 
of both the incident beam and the fluctuations in the 
medium. For nonlinear optics, one is perhaps more 
interested in coherent scattering. We shall discuss in 
Sees, IV rnd V two important cases, sum-frequency 
generation and parametric amplification, respectively. 
In all cases, there are one or more pump fields prssetu. 
We shall not concern ourselves too much about how the 
statistical properties of the pump vuodes change. 
Instead, we are interested in finding the statistical prop- 
erties of the generated modes, and the rate of genera- 
tion as a function of the statistical nature of the pump 
modes. Conversely, fr m the statistical properties of the 
generated modes or the rate of generation, one could 
obtain some information about the statistical nature 
of the pump modes. 

It must be noted that in our discussion of single- 
photon absorption, we have assumed a bounded system 
for the photon fields. This type of treatment is most 
conveniently applied to the case of a cavity; photons 
are neither coming into nor going out of the cavity. In 
principle, the same treatment can be applied to prob- 
lems of light propagation in a medium. In practice, it 
is indeed successful in dealing with incoherent scattering 
(see Sec. Ill), but for coherent scattering, it becomes 
extremely difficult. Rigorously, the latter case should 
perhaps be treated by the method of many-body trans- 
port theory.8 However, imagine an infinite medium and 
» box of finite volume in which the photon fields are 
qua&ftrect* This box of photons interacts with the 
medium for a time /, as its center modes in the z direc- 
tion from zj to Si+c/, where c is the light velocity in the 
medium. The resultant change of statistical properties 
of fields in the box can now be calculated usin the 
cavity treatment. A more general treatment ot the 
propagation problems is given in the Appendix. Vor 
steady-state propagation, it is shown that the results are 
essentially the same as in the cavity ca-ic with C replaced 
by —z/c, as one would expect. 

II. TWO-PHOTON ABSORPTION AND 
RAMAN TRANSITIONS 

The calculation for two-photon absorption is essen- 
tially similar to that for single-photon absorption, except 
that the mathematics becomes more complicated. Here, 
an atom makes transition from the state |vh) to the 
state l^-j) by absorbing one photon in the *th mode ana 
another in the /th mode. The interaction Hamiltonian is 

3C|Bi=i: {^„'cEt'-'^OE/'-'CrO-l-adjoInt),     (13) 

where JJ is the matrix element for the two-photon 
transitions.1011 Using the same procedure as in the case 
of single-photon absorption, one can find that the 
density matrix p? for the photon system obeys the 
equation 

dpr/dt= ~ ß^'ZiaJaSakaipF—latatpraSaS 
-f Pf a»{ai,aiai)/>u0+ (aKJKuWpp- 2aik

,ai,p»a*a( 
+fl«b«jff»W)Ä4e]j   (14) 

with 

ßw^llirtwwlvl'iiv.+^lf d*r 

X.YWIiuWj'linWI'. 

The above equation governs the change of statistical 
properties of the photon system in the two-photon 
absorption process. The solution of Eq. (14) is difficult. 
However, it is clear that if the absorption is large, 
tlie statistical properties of the fields will be appreciably 
disturbed. A coherent beam will no longer be coherent 
after interacting with the medium. 

From Eq. (14), we obtain 

<)(rtt)/a/=-/S<l>0»u0-ps.«»)(a»olta.) 
+/J"W0<at>,   (ISa) 

= -2^<1'(pu»-pSA0)(a*,a*«*,a/) 
+2/S<1>p2AM7t-WaH-l)).   (15b) 

In Eq. (15) the last term, which is proportional to the 
population ps*0 in the excited state, arises because a* 
and a do not commute. It can be regarded as the 
spontaneous emission term in the two-photon absorption 
process. Assume that the »wo photon modes arc in- 
dependent initially. Then, as long as the photon dis- 
tribution is not appreciably disturbed by the absorp- 
tion, we can write 

<ot
,atfli,ai)=(atta*)(rti,<»i)=(«t)(Hi). 

The average rate of two-photon absorption depends 
on the average numbers of photons in the Jtth and the 
/th modes. However, if *=/, one would find 

a<fl,)/a/= - 2ß^(plA
,>-p2A'>)(a^atak} 

+4/J'W<«*>, 
a(a*,a1)/d/=~4^J>(p1.1

0-pJX«)(ö*Vo4a») 
+4ß<*'PtA2{aSat)+l).   (16) 

Here the absorption rate with pw0—0 is twice as much 
as that of Eq. (15b) with *—/, since two photons in the 
same mode are being absorbed simultaneously. With the 
spontaneous-emission term being neglected, the average 
absorption rate is now proportional to the strond-ordcr 
correlation function {a^a^atau}, anil therefore depends 

'Sec, for example, D. Tcr H^ar, kept. Prngr. I'liys. 21, .KM 
(!96l). 

• The Icnglii of the tio\ can be taken as the iirmiucl of the light 
'■clocily and the response litre of the photon aettctor. 

'«M. Guppcrt-Mayer, Ann. Physik 9, 27.) (I'Mll. 
" P. Lambropoulus, C. Kikuchi, amJ «. K. Osliorn, Pins. Kcv. 

144, 10S1 (1966). 
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on the statistical nature of the fields.11 It is two times 
higher for chaotic than for coherent sources, since1 

(otüt«ö)oh.0ti0=2((ata))a
) 

(ö^^oohrtou«- ({a'a))2. (17) 

l'hysically, a chaotic source has more iiicgularilics in 
its intensity distribution than a coherent source. In a 
nonlinear response proportional to higher-order cor- 
relation functions of a* and a, the peaks in the irregulari- 
ties are weighted more strongly than the valleys. Con- 
sequently, the average nonlinear response from a source 
of more irregularities appears to be greater. It must 
be noted that if the absorption is appreciable, then 
(aJataStiiXl) in Eq. (15) also d'-pends on higher-order 
correlation functions of the initial field, as is seen by 
itcr.^ ion on Eq. (15). A similar discussion can be given 
to the case where the fields contain many modes. 

Assume that at each frequency there is a set of spatial 
modes, and for simplicity the fields consist of only two 
frequencies, «* and at. The electric field at the position 
r is now given by 

E(r) = Et(r)+E((r), 

E*(+)(r)= Ei<->(r)t= ,(2*W*£ uti*(r)</ut. 
(18) 

By carrying out similar calculations as in the single- 
mode case, one would find at zero temperature 

» Jv 

7=[hl2i'(u..+cot)/2A2]) (19) 

assuming, for simplicity, that all fields arc polarised in 
the same direction. liut-ui, Eq. (19) becomes 

* Jv 
X \(r){Ek «+>£»" >£,'- '£t'-' >.   (20) 

Using Glauber's 1' representation and the quasiprob- 
ability distribution for the field amplitude ih,' we can 
write for/=0 

(tV-W+'/v-)/^'-)) 

= j</^ir(5i)|^(«,r)!'.     (20a) 

Then, if A'(r) = constant, and W(Sk)>Q, one would 
have a higher initial absorption rate in the multimode 
case than in the single-mode case since 

The discussion on two-photon absorptions can be 
applied with slight modification to Raman transitions 
between localized states. Here, instead of two photons 
being absorbed in a transition, one photon is now 
emitted, while the other is absorbed. Thus, for Raman 
transitions, the interaction Hamiltonian in Eq. (!3) 
should be changed into the form 

KIM- L {w^c.E,,1 ,(r,)Ed'
,,(r,)+adjoinl}.    (21) 

In the single-mode case, the density matrix for the 
photon system becomes 

dpF/'dl= —ßnKaJatataJpp— 2ai.ajpnija, 

+Pi'Ot
ta10(:a,,)pI,i

0+ (akajai?a.ph— lajd.pnii.aj 

+p*'a*ff.Wa.)ps40],   (22) 

where /3« has the same form as in Eq. (14). From the 
above equ;ition, we find the average rate of Stokes 
photon generation or the pump photon absorption11; 

= 20K(pM''-p^o)<a*W,,ü.) 
+ 2ft,[(al

t«t)pM,,- (ü/.Op.M»].    (23) 

'•'he first term in Eq. (23) corresponds to stimulated 
Stokes emission, whereas the last term corresponds to 
spontaneous emission. The latter appears as a noise- 
source and is responsible for the self-generation of the 
Stokes field. If the pump field is of high intensity and is 
not depleted appreciably in the Stokes generation, we 
can treat at and aj as <; numbers in the approximation 
and pf.(/) = p1(0)p.(/), where pt and p. are the density 
matrices for the pump and the Stokes fields, respec- 
tively. From Eq. (22), we get 

^■'•.Cp.(/)a.ta.]/a/ 
= 2/i/i[(pI.i"-p2.40)<H,<^-p..."] 

X Tr.O.Wa.'tf.]+ 2^(at
tüJp1,,".    (24) 

The solution of the above equation gives 

(a/a.)(/) = Trpt(!)){[Tr.(p.(0)a.ta.)+/i//i] 

Xexp[yj(al
,,«*)0--IA«), 

ß(at
t,at) = [(p1.4"-p.,.4")ai.tat-p^"]20Ä, (25) 

A{aJ ,ak) = 2ßRaJakpiA
n. 

By expanding exp(ßO into power series, it is seen that 
{a,*a,)(t) is a function of the Hth order correlation 
functions of aj and ak. Therefore, the Stokes generation 
must depend strongly on the statistical properties of 
the pump field. In particular, for a coherent pump field 
wc have, assuming p2,,"«(pM"-p,M")<*»*</»., 

{tf.t«.)(0 = [(a.,(O)aJ(O))+(l-p-..,l'/Pi.i")] 

Xcxp[%(pl„1"-p,,l")((»*,(/J)/]-(l-p..,"/p-,in)1 

11 K. W. Hellw.mli, ttms. kiv. UO, 1K.S2 (!%.};. 
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but for A chaotic pump field, since 

{(,7t')"(<n)"H«l«atW))-, 
we have 

<a/*.)(0 = {[(«.t(0)a.{0))+(1 - piZ/pM0)]/ 
[1 - 2/9„(pi.40-p2/)(a*tait>/]) - (1 -p^/pu"). 

Clearly, the average Stokes generation by chaotic pumps 
is much more effective than that by coherent pumps. 

The multimode case in Raman transitions is some- 
what complicated. For simplicity, we assume a uniform 
medium which fills up the entire volume of quantiza- 
tion. Assume also a set of spatial modes associated with 
each frequency, or a band of frequencies with a band- 
width much smaller than the Raman linewidth. Then, 
if the pump field is not highly depleted, we can 
show, for p-..40=0> 

3 Tr.|>.(0^(+,^(-)l c»/ 

+ (/'"./2)5:kxl2j),   (26) 
x 

7«= O-Vu,| IJ| 
4|(«|-».)/A], 

assuming all fields to be polarized in the same direction. 
In deriving Eq. (26), we have used the approximation 

where the summation is over modes at the frequency ut. 
This approximation is equivalent to relaxation of the 
momentum matching condition in the Raman transi- 
tions.13 The solution of Eq. (26) gives 

</?.»'/-/->)M = C(/v,<"£/-')(r,0)+.V(r)] 

X(exp(2-)-«/':t
(+V:t<-V))-.V(r),   (27) 

.S-(r)=(/W,-2)Li«.»(V)|2. 

if the quantity in the square brackets is independent of 
r, then (/i,(+)/:,(~,)W can be regarded as the average 
Stokes intensity in the volume. Since the magnitude of 
(expilyiilik^Jit^H)) is usually larger for multimodes 
than for a single mode, the average Stokes intensity 
should be higher for the muKimode case. In the quasi- 
probability distribution, we have 

(exp(27«/'t'+>/•*'->/))= A/^IIX^-) exp(2>«| 541H), 

For stationary fields with large numbers of modes,1 

II-(5t)=exp[-|5,iV</-t'+'/-:t'->)l/V 
X{Et<*>W->}.   (28) 

Such a distribution gives 

fd'WiSk) | St |3" = «!(/u<«/'t(->)». 

Therefore, we arould get 

(/•:/+'/;/->)(/)=C(£,<+>£.<-')(0)+5]/ 
X[1-2YS(**

(,
-W-))0-S. (29) 

>» N. Bloembwgen ami V. K. Slun, I'lns kev, I iiu-rs U. 'In 

Equation (28) also leads to the conclusion that the 
probability of having at least (1/A7) part of the en- 
sembles with a gain coefficient 27*15*1' larger than the 
average gain 27R(£t(+)£t

(-') by a factor InA' is 1—*-' 
= 0.63, where N is the number of mod,«." However, if 
the fields are nonstationary or there is phase correla- 
tion between modes, the factor ImV would be replaced 
by a much larger value, of the order of N for full phase 
correlation. 

The statistical properties of the Stokes output in the 
Raman transitions are difficult to describe quantita- 
tively. Qualitatively, they depend strongly on the 
initial statistical nature of both the pump and the 
Stokes field. If the pump is coherent and not appreciably 
disturbed, then the statistical properties of the Stokes 
output would be the same as those of a quantum 
oscillator.14 In particular, if initially there is no Stokes 
input, the medium would appear as a Stokes noise 
generator. 

III. INCOHERENT LINEAR AND NONLINEAR 
SCATTERING 

Rayleigh and Brihouin scattering are often regarded 
as linear scattering processes. Nevertheless, they belong 
to the class of nonlinear optics in the sense that ex- 
citational waves in the medium actually play the 
equivalent role of light waves. Incohcrcn. Rayleigh ami 
llrillouin scattering are most frequently discussed in 
the classical language." The transformation from 
classical to quantum terms is, however, straightforward. 

Consider scattering due to density fluctuations in 
a dilute medium. The total Hamiltonian is 

3C=JCo-|-3Cint, 

where 3Co, given by Eq. (4), includes the coherent in- 
teraction of light with the medium, and 3ilinl describes 
solely the incoherent part of the interaction. In first 
order, with the trace taken over the atomic system, 
.TCini can bo written as 

.TCm^-r [Ei'"(r.)pE1„'-'(r,) 
<.* 

■fE1/
+1(r.)-pE/->(r,)],   (30) 

" J. I*, (rimlon, I, K. Walker, anil \V. H. I.niiist-ll. Plus. krv. 
U0, XU6(1'«>,?). 

"Si-i-, fur v\.im|>!i'. L I). l.amlMii am) K. M. I iWiii/. Wer- 
Irihlvihiiiiin i'( l'it»iiiiu,iiis Milii iPIT^HIIMII Pit~s, Inc., New 
Vorl., I'ÄÖ), p M'. 

%' 
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where p is the atomic polarizability in the electric- 
dipole approximation, «o is the pump mode, and k is 
the mode of the scattered radiation. By assuming 
running modes with 

ut=li(l//At)"
iexp(«kT), 

Eq. (30) takes the form 

Kfa^-E C«u(0a«o(/)/4*+a;,K/K(/)/i],   (31) 
* 

where in the Heisenberg representation 

/*== -I (2W;a)t"W'2, V-')^-p*-^ 
t 

Xexp[i(k-k,)-f.], 

the equation of motion is 

(M0/</<= «WO- (»/*)/**ö*,C0 •       (32) 

If the pump field is of high intensity, and is not dis- 
turbed appreciably by the incoherent scattering, we 
can treat a* and a*,, as c numbers. This is actually 
equivalent to treating the pump field in the classical 
limit. Then, Eq. (32) can be solved readily. In fact, the 
problem reduces to the one of radiation by a prescribed 
current distribution discussed by Glauber.1 The solu- 
tion of Eq. (32) leads to the expression of an electric 
field at a point r for the scattered radiation, 

E..t-)(r,/)=-(lA)dAc-'(r10/d/ 

\<:ö//l   \8irvi     i.     VikuL*) 

X/AJO exp[fk-r-ja.(/-/')] 

-f-complex conjugate! . 

The integrat^M in the above equation can be carried 
out explicitly." At a point r sufficiently far from the 
scattering region, the electric field is approximately 
given ty 

F...(-)(r,/) = a»,F(r,Oexp((kor) 

X f rfV.V(rV) exp[i(ko-k) • r'],   (33) 

F(r,/)=(k x ig-itt) * (k/1 r- R| )(2ir W«t/,
J)"J 

Xexp(ikr—iW), 

where V is the volume of interaction and R is the center 
of V- The calculation now follows essentially the same 
as the classical treatment.1' Clearly, if the scattering 
medium is uniform and stationary, so that the density 

" B. IVrmi. Hrv. Mihl  Plus i, K7 (I' "). 

of atoms N{tfi) is constant, the integral fv dh in 
Eq. (33) would vanish if ko^k, and, consequent!), 
there is no scattering in the direction ks^ko. Thus, in- 
coherent scattering appears as a result of density 
fluctuations. If we consider only one Fourier component 
of the total density fluctuations, 

A'M = E« Xt exp(iq ■ r- mj), 

then we obtain from Eq. (33) the first-order coi ition 
function 

(E^+Kr,/,)- E.,M(r,.'2))= \Hf)lmKH'{a^aH) 

X{.\\!{li)X,ils)*}A(kQ-k±q) 

Xexp[-)(ü;(,±U!v)(/i--/2)] 

Mk>,~k±(i) —* Ä(ko-k±q). (34) 

For A'{r,0 = constant, the scattered radiation in the 
direction kj^ko+ko' vanishes. The Fourier transform of 
{J\c'+)iriti)ti.el~iir,ld) gives the power spectra! density 
of the scattered radiation. Higher-order correlation 
functions can also be obtained from Eq. (33), and, 
hence the jtatistical properties of the scattered radiation 
can be described completely. 

It is, however, interesting to note that for this case, 
an explicit expression of the density matrix for the 
scattered radiation can be written down immediately, 
following Glauber's treatment for the radiation by a 
prescribed current distribution.1 If we assume F repre- 
sentation for both the pump field and the density 
fluctuations, such that 

(M'-iak. *n~jp*H /'(nt.Ka^-W, 

(35) 

((Ag-cv,.*)")=JrfV./'taKa.MO". 

then we find for the scattered radiation 

P&)=jd*atJd\Pl!,(aH)Pq(,<ril) | at(l)){M01 , 

with 

at(i)=(«/*) J   Äff(«*.#,), (36) 

where 

This shows that statistical properties of the siallcml 
radiation are determined by those of im ident radiation 
and density fluctuations. Thus, measuremenls of 
statistical properties of the scattered radiation could 
yield information about the statistical properties of the 
density fluctuations, if those ef the imidrnt radiation 
are known. The analysis is partinibrly simple Snr 
coherent incidrnl ladiation. 
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Recently, the question whether intensities of scattered 
radiation may be different for coherent and incoherent 
incident radiation has arisen." It is clear from Eq. (34) 
that with our assumptions for linear incoherent scatter- 
ing, the average scattering intensity is directly propor- 
tional to the average number of photons in the pump 
modes, and is independent of the coherent property of 
the pump field, 

The above calculation can be extended to the cose of 
incoherent nonlinear scattering, which has recently been 
investigated by Terhune et <i!.u We shall aga:n consider 
only nonlinear scattering due to density lluctuations, 
in which two photons in the pump modes ko and ^o' 
are scattered into a single photon in the scattered mode 
k. The corresponding interaction Hamiltonian can be 
written as 

3C;nt=-i; [E*(+'(><) 
■ * 

•p^: FV-'WE^W+adjoint],   (37) 

where p*2' is the second-order nonlinear polarizability." 
Following the same procedure as in the linear case, one 
would find for the scattered radiation 

E8c(-!M - fli^vFMCexp/tko-f-ko') ■ R] 

X f rf¥A'(r',/) expC/dto+ko'-k)^] 

X( )    expCjkr-»(u)„+W)0-   (38) 

If only one Fourier component of the density fluctua- 
tions is taken into account, the first-order correlation 
function of the scattered radiation is 

(E.c'+'Cr.i,) • E..<~'(rl/S))= I F(r)| »STT'F 

X <<iio
tot,.td,oav)(Ar^,*)A(ko+ko'- k±q) 

XexpC-iWfwo'iw.K/,-/,)],   (39) 

where F{r) is given in Eq. (38). Assuming Eq, (35) for 
both the pump modes and the density fluctuations, we 

"T. V. George, L. Galdstcin, I,. Slama, ami M. Yokoyama, 
Phys. Rev. 137, A3Ö9 (I96S); R, D. Watson and M, K, Clark, 
Phys. Rev. Letters H 1057 (1965); R. C. C, Leite, R. S. Moore, 
S, P. S, Porto, and J, E. Ripper, iM. 14, 7 (1%.')); D. H. Wood- 
ward, Appl. Opt. 2, 1205 (1%.?). 

'• R. W, Terhune, P. D. Maker, and C. M. Savage, Phvs. Rev. 
Letters 14,681 (1905); P. D. Makcr.in PrgfaMngs of Hie Canjemirr. 
im Physics ol {>iiiiiiliini IJftlrenia, VurrUi Kim, tWi, cdilril liy 
P. L. kt-llty; li. Lav, »ml P. V, TaHafnwatd (McC.mw-lHll Hook 
('om(innv, Inc., Nivv Vwk, I'Xrf)), p, (P(). 

"j. A. Arm.ilroni;, N. Hlm'mlKrKt'ii, J, Dticüing, ami P. 
Pcnhan, Phys. Rev. 127, 1918 (1962), 

find the density matrix for the scattered radiation 

pt{t) = jd^Jd^J 'fV,A0(a,0)/\0.(<n0.) 

i r' 
«t(/) = - /   rf/fffc,.^,,,), (40) 

ff(a*o,n*o',o-4) = - (STr'/j^/^ait/n»«^'**/.9)1'' 

From Eq. (39) it is seen that the scattering in- 
tensity, (i£BO

<+>('',0l2). for k&l is proportional to 
(flto^sKfU/'Hc'). but for k=l, it is proportional to 
(aj/at/öt^k,), which from Eq. (17) is two times larger 
for chaotic than for coherent fields. 

In the actual experiments, the incident radiation may 
contain many modes. However, as long as tne diverg- 
ence and the linewidth of the incident radiation are 
small compared with the acceptance angle of the 
photodetector and the linewidth of the scattered radia- 
tion, conservation of energy and momentum as ex- 
pressed in Eq. (39) can be relaxed. We therefore have 
for the multimode case, 

< | £„<+>(r,0!2)^ I m I '(.VFL'/ft Wo') 
XiEt^Ek/^\<->E^->KR,t) 

X^WWko+ko'-kiq),   (4i) 
where 

^*.<-,(R) = i: (iThwo/fJS)"^ expt/kox-R-uoox/). 

and R is the center of the volume V, Then, if kt-kt, 
from Eqs. (20a) and (28) we find for stationary fields, if 
the number of modes is large, (/V+'/n,(+>/♦;»„'■-)/■■»,<-') 
= 2</V+>/si/->)2. This shows thr.t the scattering in- 
tensity in the mullirnode case is two times higher than 
in the single-mode case. The second-order incoherent 
nonlinear scattering is closely related to the second- 
order coherent scattering, which gives rise to sum- 
frequency and second harmonic generation, as we shall 
now discuss. 

IV. SUM-FREQUENCY AND SECOND 
HARMONIC GENERATION 

The coherent sum-frequency generation can be 
described by the same interaction Hamiltonian in 
Eq. (37) for incoherent nonlinear scattering. It was 
shown in Sec. Ill that if there are no fluctuations ir 
the medium, scattered radiation can only appear in the 
direction where the wave vectors of incident and 
scattered radiation arc matcluil. This ioircspoiuls to 
coherent scattering. Thus, (olicrent sum freqiffiOty 
generation desrrihed by the llumillotiian of Kq. (37) 
appears in the «lirertion ko+kv'- Ik- 0. 
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The calculation follows csscntiaily the same pattern 
as for the case of incoherent nonlinear scattering. Again, 
in the Heisenberg representation, the equation of 
motion is 

dat/dl=-io>kitU)-{i/ft)fi:aktIil)akll-{l), 

X^-p'^A'-   (42) 

Here, we have assumed a uniform medium in a volume 
V. For intense pump fields, which have not yet been 
depleted appreciably by the sum-frequency generation, 
o», and ffi«' can be treated as constant c numbers. Then, 
Eq. (42) yields 

a*(0 = Cöt(«)- ('^Mo^'O exp(- j2a.o/).    (43) 

From Eqs. (42) and (43), we find the average rate of 
sum-frequency generation; 

d{a^ak){i)/dl 

^m)Ük*{ak!ak/akm-h{ak^ak,.)m 
4-(aJi//A)C/»*\</toW^i)(0)+/t(a*ta*0at.0)(0)3 

+ (2!/*! 2*V*s)(^o'W*.>(0),    (44) 

which can readily be integrated. Equation (44) shows 
that for ko=ko', corresponding to second-harmonic 
generation, the average rate oi generation depends on 
the initial statistical properties of the pump and the 
second-harmonic fields. In particular, if (ai(0)) = 0, this 
rate is proportional to the second-order correlation 
function {akJakJaklflka){0), and is therefore two times 
higher for a chaotic than for a coherent pump field. 

Corresponding to the Hamiltonian of Eq. (37) with 
a», and o»,' treated as r. numbers, the density matrix 
for the sum-frequency field is 

pt(f)= / d*aktid
taH'Pkt{akt)PkA<*w) 

XöfoWO)^'^*), 

J9(öi)=exp[atat»-«i*flt], (45) 

J f ctk-- I dl fkakfUrt-, 

where /* is given in FA\. (42) and /' representation is 
assumed for the pump fields. 

Pt,-  / '/^»»/'»»('"OSoX'Uol i 

P*O'= / '/W^V(ft*«')l«t»'K«<ii'l • 

If initially, /*(0)* fdfyPMßMßtl, then Eq. (45) 

becomes 

Pt(0 - jd*«k^aud*ßkPka{a^PkA<*i«)Pk(ßk) 

X{a*-f-Ak)(a»+A|,   (46a) 

which, in the case of socond-harmonic generation, 
reduces to 

p, (/) = / d*atod*ßkPH(a**)Pt(ß*) 

X\<*k+ßk)(a»+ßk\,   (46b) 

with ak={i/h) Sv' dt fi&k^. The above expressions 
lead to the following results. (1) For coherent pump 
fields, if |/3i)=|0), the generated sum-frequency field 
is also coherent; but if |/3*)?*|0), the sum-frequency 
output has the same distribution function Pk as the 
input with pk{() = fd*-ßkPk{ßk)\ak+ßk){ak+ßk\. (2) If 
Iftk^lO), the sum-frequency output reflects the 
statistics of the pump fields. (3) In general, the sum- 
frequency output has the composite statistical prop- 
erties of the pump fields and the sum-frequency in- 
rut. Clearly, measurements of the statistics of the 
sum-frequency or second-harmonic output could yield 
information about the statistics of the pump fields. 
For example, if \ßk)=\Q), the «th-order correlation 
function of the second harmonics is proportional to 
the 2Mth-order correlation function of the fundamental. 

The discussion can easily be extended to the mul- 
tinode case. As discussed in the case of incoherent 
scattering, if the energy and momentum matching 
condition is relaxed, Eq. (44) gives 

d{Ek^mk^){tmi<iß)lgk*{Ek^mk^Ek^){tfi) 
- j?*{£i'+'£4o<->£v '-')(r,0)]+ («*//*) 
X[j**(£»0

(+>£v<+)£*(-')(r,0) 
+gk{Ek^E^Eklt. <->)(r,0):+ (211» | V/*8) 

X<£,,<+>£*,<+>£*..(-'/v(-')(r,0),   <*. j 

where /^"'(r,/) h.^ the same expression as in Eq. (41). 
Again, for *o=*o', if (/'-t(0))=0, the average rate of 
second-harmonic generation is usually higher for 
multimode than for single-mode pump fields, since 
(£»0<+'£,0<+)/i»8<-'£i,'-)) has a larger value in the 
former case. For stationary fields, there is a ratio of 2 
in the rates of second-harmonic generation for the two 
ciises.'" The density matrix given in Eq. (46) can also 
easily be generalized to multimodes. 

The above discussion is valid as long as there is no 
appreciable depletion of pump power by sum-frequency 
generation. For the more general case, the mathematics 
becomes much more complicated, since the reaction 
of the sum-f.equency field on the pump fields musl be 

"J, Duelling ami N, Itlocmiiergcn. I'hvs. Rev. 133, 
(1964). 

i4'M 
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taken into account, The suni-frequcncy genera lion now 
depends on higher-order correlation functions of the 
initial pump fields. The output is no longer coherent 
eve» if the initial pump /ieids are coherent. Ducuing 
und Armstrong21 have discussed the statistical aspects 
of second-harmonic generation with high conveision 
using the classical approach. A corresponding quantum- 
statistical discussion would be extremely difficult, if 
the nonconumitability of the operators a and a* is to 
be taken into account, 

V. PARAMETRIC AMPLIFICATION 

One of the most important subjects in nonlinear 
optics is parametric amplification. It is not only because 
the parametric amplification may lead to tunable 
oscillators at light frequencies,22 but because in a broader 
sense, it. also describes such important nonlinear proc- 
esses as stimulated Raman and Brillouin scattering by 
elementary excitations.23 In the latter cases, the idler 
photon mode is replaced by the mode of elementary 
excitations. The calculations remain the same if the 
elementary excitations are bosons. 

The statistical properties of a parametric amplifier 
have been discussed in detail by Gordon ct u/,S4 How- 
ever, they have assumed a constant field strength for 
the pump mode. From our discusr.ion in the previous 
sections, we expect that the statistics of the pump field 
should inlluence the statistical output of the amplifier. 
Their results are valid only when the pump field is in a 
coherent stats. In the following, we shall follow their 
calculations, but take into account the statistical prop- 
erties of the pump field. 

The interaction Hamiltonian for parametric am- 
plification is also the same as in Eq. (37). 

XE/'-^r.O+ad joint].   (48) 

Here, however, the coherent scattering process is to 
destroy a photon in the pump mode p, and to create one 
photon in the signal mode s and another in the idler 
mode /, with u!p=w,+ui and kp-k.+ki. The Heisen- 
berg equations of motion are 

where 

da,/dl~ — ««„a.W - kaPit)a,* [l), 

m 
K= - A' K^ir'/tojW«,,«.^«) '%■ pW*: M/ • 

" J. Ducuir.K ami J, A. Armslri-ag, in Proceeding of the Third 
Quanlitm lüeäronics Conference, Paris, IV6J, edited by V. Grivet 
and N. Blocmlitrgen, (Columbia University I'ress, New York, 
1964). p. UAi. 

11 ]. A. Clordmaicie and K. C. Miller, Phys. Rev. Leiters 14, 
973 (1965). 

" V. K. Shen and N. HLw.-bewn, I'hys. KPV. IB, M2 (I'm), 
"J. P, Cmhn, W. H. Louiscll, and I.. K. Walker, I'hvs Rev. 

129, ■I«! (!%.(), See also \V. li. I.oni.scll, RiuiMlimi urn! Nmte in 
{hiatilum /'.talnmirs (Mctirawllllt Hook CiMiijianv, Inc , Kew 
Vork, 1904,1. 

If the pump field is of high intensity, and has not been 
depicted appreciably by the parametric process, then 
a„(.')«G„(0)exp(-!«,/), where ap(0) and 0/(0) can 
be regarded as c numbers. Then the solution of Eq. 
(49) is 

a,(/)=[a.(0)coshCU|(d<
,aP)1/sO 

+CuVM(a,S1)
1'2>,(0) 

XsinhCH (o/a,)"8/]) exp(--iW), 
a;a)={a/(0)cosh[|K|(a/a,)"8/] 

+I>ap/M («>,.)''^.(O) 
XsinhCi K | (a/d,)■ '!0) exp(-««//).  (50) 

(«.t«.)(/) = Tr^(0){(a.ta.>(0) cosh'tkl (a^"'^ 
+ «a/»a/)(0)+l)+sinhtU|(a/aP)"

2/] 
+ /[^.(a, V);./)/1 K I (a/ffp)1/!- kW^^M/ 

Ul Wa.),;2]5 sinb2[U| (a^y-Q),   (51) 

with a similar expression for (o/'flrKO- Equation (51) 
shows that the output signal in the parametric amplifica- 
tion depends on the initial statistical properties of the 
pump field. Assume (a.a/)(0)=0. Then, for a coherent 
pump field, we have 

+J|>1tfl.)(0)+(a/tö/)(0)-H] 
Xcosh[2|K|((a,^)1'J)/],   (52) 

but for a chaotic pump field, since 

w»,1 ha'/e 

{a. *a.){l) = hiiiM.m - WtiM -1J 

+i[<a.,</.)(0)+(«rta;)(0)+l] 

X E In !/(2«) 0(2 M O'^a/a,),.   (5J) 

It is dear from the above expressions that the signal 
output is much larger for chaotic than for cohere.it 
pump fields. 

Eor the multimode case, if the energy cud momentum 
matching condition can be relaxed, as discussed in the 
previous sections, the calculations follow essentially 
the same as in the single-mode case with a replaced by 
£(-)(r,0. and K in Eq. (49) by 

»'= -A'K(2Vi3)(W«.*r)"^.-p<2'*^A.   (54) 

The result is 

{E.^E."){r,t) = Trp^O) ■• {E,^E.^){rfi) 

Xcoshtkl (/sp(+'AV->)1"0+ (/•.•/(-).fc/(f,>M) 
Xsinl1

2[U'|(/-.VH/,V-,)"20},   (55) 

assuming (/',',' '/•./< I)^.l0 = ('. Again, the output signal 
is usually larger for multimode than for single-mode 

i 

i I 
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pump fields. For stationary fields with many modes, 
we have 

<£. w^V-^M - J
ir<A'.(+)/':.<->)(r)ü) 

+ (£/<->£,(+')(r>0)] £ [»!/(2«)!](2Ä'/)?» 

X(£p(+>£I.(->)"(r>0).    (56) 

In principle, all higher-order orrelaticn function! 
of the signal and the idler fields can be obtained from 
Eq. (50). However, to describe the statistical properties 
of fiekis, ai> explicit expression of the density matrix 
for the fields is usually of grf;at interest. For the case 
of parametric amplification, the density matrices 
p.(/) = Tr/p,.j(/) and p/(0 = Tr,p.i;(/) for the signal and 
the idler fields can be obtained through the use of the 
characteristic functions,5* which arc defined as" 

X.(y,l) = Tr,.,{p,.,(0 exp&a.*«))] expC-7*a.(0)]} 

XexpC-Y*«.«]}.   (57) 

Ä'/(7.0 = TrJ,/(p.(ü)p/(0)esp[7a/HO] 
XexpC-7*ai(/)]}. 

Explicit expressions of X, and Xj can be found by sub- 
stituting into Eq. (57) the expressiom of a,{l) and 
fli(0 in Eq. (SO) and the known initial distribution p.(0) 
and Pf(0).24 ilcie, «^ and "„ are treated as c numbers. 
Theii. the characteristic functions lead to the density 
matrices in the P representation," 

p,W = T!7pi,,(/)= Lw,.(«.,0ict.)(a.|, 

X\JXi-yJ) txp(a^*-a*y),l^/nA \a,),    (58) 

with a similar equation for p;(/). As an example, con- 
sider the case where initially both the signal and the 
idler mode» are in the vacuum state, 

P.(0)= io.)(o.|, P/(o)=iO/)(o,i. 

From Eqs. (50) and (57), the characteristic function X, 
is 

;r.(T)/) = exp{i H '(cosh'J«! («/ap)"2/] 
+sinhiLUi(arWQ-1)).   (59) 

Substitution of Xt{y,t) in Eq. (58) gives 

l't{a.,t} = jdWMKlMn.}) 

Xe>cp[-ia,|! {«.)],   (60) 

where 
(n.)(/)=^sinh2[|«itp|0. 

" R. Glauln-r ir Prortdmgt e/Qm/ttettet nn fkyski i'IQuaiilum 
Wecirixtits, /w)5, nlilal by I*. I., Kcllev, H. La«, and I'. K. 
'lanmnwalil (Mriiva« lliti liook CimipaDj, Inc., New Vii:k, 
«U6Ö), p. 7H8, 

If the pump field is coherent, this corresponds to a 
Gaussian probability distribution for a chaotic field 
with an average number of photons (w,).'4 Thus, 
with no input to the amplifier, the parametric amplifier 
acts as a noise oscillator. Characteristic functions for 
various input conditions have been obtained bv Gordon 
el of« 

More generally, we should also consider the loss in the 
modes due to absorption. However, in the first approxi- 
mation, we can simply take at, and a/ in Eq, (49) as 
complex quantities. The mathematics is straightfor- 
ward, and will not be reproduced here. The above 
discussion is valid as long as the pump SiM is not 
appreciably disturbed. The general calculations, taking 
into account the reaction of the parametric process on 
the pump field, becomes extremely complkaied. 

VI. CONCLUSION 

Nonlinear optical eiTccts often depend on the statisti- 
cal properties of the fields present. The rate of nonlinear 
absorption, emission, and amplification is higher for 
chaotic than for coherent, and higher for multimode 
than for single-mode pump fields. The statistics of the 
fields generated in the nonlinear effects is a partial 
function of the statistics of the pump üekls. Measure- 
ments of the statistics of the output fields may yield 
information about the statistics of the input fields, and 
the statistical properties of the medium. 

APPENDIX 

Classically, a cavity problem of coherent scattering 
can usually be converted to a corresponding steady- 
state propagation problem by simply replacing / by 
~z/c in the field amplitudes, where S is the direction of 
propagation. It is expected that the same is true in 
the quantum treatment. This can be realized by using 
a localized momentum operator instead of the Hamil- 
tonian operator. 

For steady-state propagation, the field amplitudes at 
fixed spatial points remain unchanged. The vector 
potential for a plane wave propagating in the z direction 
can be written as 

.IM-cLC'/ZcW.')"2 

k 

XfiM?) exp(-(W)+^»,(^ expOW)), 

iMs) -A(s)cxpWj), (Al) 

[4*(*)^f'(«)]-!**'. 
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For free fields, ^(3) = o* ex\.{ikz). Here, we have defined 
localised annihilation and creation operators b(z) and 
bHz) under the assumption that {(.bj)m{bi)'} does not 
vary much in a distance d large compared with the wave- 
length. We also assume that k=2rn/d, where n is an 
integer. Thus, the corresponding localized photon 
number operator isM 

m^itot/WZMi&ti*), (A2) 
1 

where a is the cross-sectional area of the beam, and L1 

is the volume of quantisation. Wc can also define a 
localized momentum operator, 

<P{zl>,l) = zK{zo,l)/c 

JJ   rm¥ilt 
= z~ / niz,l)dz, (A3) 

cd J .„-iß 

wtsre U{z,l) is the Hamiltonian density, and K{zi>,t) is 
the Hamiltonian corresponding to a system which has 
the same Hamiltonian density 

(M) 
'/. 

fO+i/J 

H{z,t)dz 
-Hi 

everywhere in the volume La. Therefore, 3C(so,0 here 
has the same form as given for the various cases dis- 
cussed in this paper, but with bkizo) and ^»'(zo) replacing 
(jt and aj, assuming that, the medium has a uniform 
density A"(2o), which fills the entire quantization volume 
for free fields, 

tPM=;EMLMa)Ms)+i]- 

The   momentum   operator  acts  as  a   translation 
operator: 

#(s)M=(-I/iA)C*(2),ö,W]1 

(/£'-'(2)/</s= (- l/.ft)C£<-'(s)/J,(2)3.        (A4) 

Thus, for example, in the case of sum-frequency genera- 
tion, Eq. (A4) yields 

dEk^{z)/dz-ikES~\z)=il2rwi/'ct{z)'} 

XN(z)lk-p<''>MfaE>,iz)EkAz).   (AS) 

» L. Mandel, Pliys Rev. 144, 1071 (1966). 

which agrees with the corresponding classical equation. 
According to Eq. (A4), the unitary translation operator 
is 

t/(s,s8)=  exp (i/k)f V&dz 1   .        (A6) 

Here, the space-ordered product { }+ has the similar 
definition as the time-ordered product. Field operators 
at diLerent spatial points arc connected by this unitary 
operator: 

A-M= i/-'(^o)£(wMVo) • (A7) 

We can now define a localized density matrix operator, 

P{z) = U{zfi)p{0)U-Kz,Q), (A8) 

assuming free space for 2<0. Then the correlation func- 
tion of fields at different times is given by 

</;<+'(*,<.)• • •£'+'(2,/,)£'"!(M.)- • •£<->(*,/.)) 
-Tr[X0)£H-KMi)'- £(+>(2,0£(-,(M.) 

X-••£'-'(*,/,)] 
=TT[p(z)EM{0,h)- •£<+'(ü,/.)£(-!((V,) 

X'-FJ-KOM)!. m 
The equation of motion for the density matrix pfe) is 

dp/dz={-l/ili)l<S'{z\p{z)2. (A10) 

With the help of these localized operators, the calcu- 
lations for steady-state propagation in a medium be- 
come exactly the same as the coi responding calculations 
for a cavity with / replaced by —z/c. 

Physically, the density matrix p{z) describes an 
ensemble of photon systems which has all the statistical 
properties of fields at 2. If a photon system is taken as 
the section of the light beam emerged from the plane 
at 2 in a time T, where T can be the counting time of 
photodetectors,* then pfc) actually describes an en- 
semble of such photon systems. This is the ensemble wc 
measure in experiments. 

The problent of beam splitting has been deliberately 
avoided in this paper. It requires some modification of 
our formalism. Qualitatively, the split, beams would 
have different statistical properties than the unpslit 
beam, and they are correlated with each other. The 
equivalent problem in the cavity case corresponds to 
the splitting of the photon ensemble with time. 



APPEMDIX    XII 

Reprinted fron; THE PHYSL AL REVIEW, \'ui. 167. Mo. 3.818-Si, 15 March 1968 
Printed in U. S. A. 

Pennutation Symmetry of Nonlinear Susceptibilities 
and Energy Relation* 
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Permutation symmetry tor gener,';zed nonlinear susceptibilities is derived from the microscopic theory. 
It is shown that this permutation S) Jimetry is essential for the existence of a time-averaged stored energy 
density or free energy for wave propagation in a nonlinear, nondissipative medium. 

TTOR propagathn of electromagnetic waves in a 
■T Uneaf, nondissipative but dispersive medium, it 
is well known tnat a simple energy relation exists. The 
rate of time-averaged energy propagated out of a closed 
volume is equal to the rate of decrease of time-averaged 
energy stored in the volume.1 The question arises on 
whether the same energy relation holds for wave propa- 
gation in a nonlinear, nond'ssipative medium. We shall 
show in this note that the permutation symmetry of 
nonlinear susceptibilities would in fact lead to the 
existence ef such an energy relation in the nonlinear 
case. Pershan5 derives the permutatutn symmetry of 
nonlinear susceptibilities from energy consideration by 
assuming the existence of time-averaged free energy. 
However, his expressions for time-averaged free energy 
are correct only for nondispersive media. 

From the Maxwell equations 

7XE=-(lA)3B/a/, 

VXB= (l/c)dE/dt+(ir/c)J, 
(1) 

one obtains the energy conservation equation 

ir./iT)V- (EXB)= - (i/Sa-Xa/aoC^+^-E-J,   (2) 

where J is the total current density which can often be 
written in terms of multipole moments: 

J=Jconducüon+(a/^)P+cVXM-(d/dl)V-Q+ ■ ■■. (3) 

However, the expansion of Eq. (3) is physically 
meaningless, if the wavelength of the propagating 
waves is small compared with the dimension of the 
medium.1 It is then more appropriate to keep J as a 
single physical quantity. We can define a generalized 
polarization $ as3 

J-hc=m/äi. (4) 

Moreover, the Fourier component of ^J can often be 

• This research was supported by the joint sponsorship of the 
Advanced Research Projects Agency an-1 the Office of Xaval 
Research under Contract No. Nonr-3656(32). 

t A. P. Sloan Research Fellow. 
1 See, for example, L. D, Landau and E. M. Lifshitz, Eltciro- 

dynamia in Continuous Media (Addison-Wcsley Publishing 
Co., Inc., Reading, Mass., 1959), p. 252. 

•P. S. Pershan, Phys. Re". 130, 919 (1963). See also X. Hlocm- 
bergen. Nonlinear Optics (W. A. Benjamin, Inc., New York, 
1965), p. 65. 

• Y. R. Shen, Phys. Rt.-. 133, ASH (19W). 
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expanded into a series 

^(M=£»w(l.a), (5) 

where 
*<>'(M = v(»(li,w)-E(^a))) 

5ß':i!,(k=kH-kä,w=Wl+«;) 
= v '!* (k= kj+kj, a-=M, -f «0: 

ECkfawOECIjbJBs). 

The tensors x1", X<ä)! efc-i denote the (generalized) 
linear susceptibility, the second-order nonlinear sus- 
ceptibility, etc., respectively. 

Consider first the linear case, where iU'"* with «>? 
can be neglected. Let us assume a utiasimouochromatic 
wave which can be represented by 

Ef;) = £(/) exp(-;W)+£*(A c.\p(to/), (6) 

where j d£(/)/a/;«|w£(0 \. Then, it can be shown that 
for a nondissipative medium, since X1;

(I> = Xij<'> from 
the microscopic theory, Eq. (2) averaged over a period 
of time 2ir/ü! can be written as1 

(c/4*) V- (EXB)1V= - aC^/dt, (7) 

where the time-averaged stored energy density is 

V "•, = (l/4,r)[ | S P-H (B12+4ir£* ■ (A^«/&s) • £].    (8) 

Krom energy consideration, we would expect that 
there may also exist in general a lime-averaged stored 
energ- density C for wave propagation in a nonlinear 
medium. To show this, we must first derive the per- 
mutation symmetry for the generalized nonlinear 
susceptibilities. The microscopic expressions for non- 
linear susceptibilities can be obtained from density 
matrix calculation5-4 which is summarized as follows. 

In the semiciassical treatment, the Hamiitonian of 
the nondissipative system is 

3C=3Co+3Cinl, (9) 
where 

3Coi«)=/to„j«), 

3Cint'
,)=(e/2wt)(p-A+A-p)-f(e////H<r)8-VXA, 

Kin.'^'eyam^A-A. 
1 N. Bloembcrgcn and Y. R. Shen. Phys. Rev. 133, A37 (1964). 
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The vector potential A can be written as From the density matrix, we can calcu'ate the ex- 
pectation value of a Fourier component of the current 

A(rl/) = L CA«.(r) (Bsp(-W)+A»*{r) exp^wj)], densitv. 
■ (10) 

J(k.a,) evpCikT-tW^TrlJ^Mpkj)} 
AB(r)=(C/to,M)£(kM,w„)exp(fkwr), Xexp^k-r-,^),   (14) 

with V-A=0. The equation of motion for the density    where J0p(k,w) = J1,
0''(kIw)+J,(,''(k,w) have matrix ele- 

matrix p is ments 

m/dt^lsk+xwl■ (ii)   (M ij,,»,^) in,}m _{e/mc){ni {exp(._/k.r)p 
If KiM

w and 3Ci„,<2) are treated as first-order and -f (/>-2i/(8Xk) (15) 
second-order perturbations, respectively, then p can Xesp(—jk-r)}j«'), 
be expanded into series in ascending orders of the ,,,„„,,,     ,        ,, , ,    . 
perturbation. (n|V'(k,o,)|«')=(^A«c)<«|A exp(-,-k-r)i«'). 

The nth order term of the current density is now given      , , 
P=EP(-). by 

The various orders of p can then be found from the ■''"^ Z {<«| J0-(k)i«%V|p(->(»)l«) 
following hierarchy of equations 

„      '       r               , +(«|/^(kIa))lK'X«'|p"-,,(ü.)|n)).   (16) 
iAap<1)/d/=C3Co,p",3+C3cint(»,p(i,,3, 
,7iap"Vö/=C3Co(p'2']+C3Ci01

(»,P:l>]+CX1„t^,p<<"]. Subsequently, the «th-order generalized susceptibility 
H  j       L   «.f   J ' L   mt   ,f   j   L         .f   J tensor can be ootamed from the relation 

+[3Cint'»p"->].    (12) ju)(k(t0)=(_^)5cu,(k=£ki,w=f;ö,8.): 

These equations can be solved successively through 
Fourier decomposition of p'"' £(ki,a)i) • • • £(k„w,).    (17) 

P(",(0 = IIp('''(^m)exp(—w„0-           (13) The above procedures lead, for example, to the 
» second-order generalized susceptibility tensor 

-/AV 
X<2,(k3=k1+ks,ü,s=«1+a-2)= Z — OV^-P,«») 

R».,t(k3)Cexp(ika-r)]Bn, 

+ 
[zxp{-ikrx)-]n.&KK^)   Cexp(-«ks-r)],.„R,B.(k1) -+- 

r       p»'(0) 

yf^^Mk^R»»- .kORn-n^k,)) —  
Lfl'CüJj—a)«B.)(w}—wn. 

,(0) 

-»AV 
+ E 

*s(ü)j-ü),B.)(wä-{oB..B-) ' /J'GDJ-OWKWI-«,,,,") 

P.""" n r 
 ;  +Rn'™t(k3)R,„..(l5J)R,..„.(k,) 

.*l2(a)i-&.<n„") ("!—«»" »OJ 

p» (0) 

PK- 

^'(üJi-a),,.)^-«,,,,) 

p...*0' 

ÄJ(a>,-unn.)(«i-a>„-n)    ^(»i-«Ä.,^)(M3~« :..)J' (18) 

where 
Rn..'(k) = C(p+»AsXk)exp((kT)]„„. 

= nn.»'(k)?=[R„.„(-k)]*. 

into power series of (kr). One would find5 

R„„.(k) = iwü,ft„.r„„.-.l»to„„.[r(k-r)]„. 
+ i»7;[l-f2s]r...Xk+.--!    (19) 

where i is the orbital angulai momentum of electrons. 
N is the number of atoms per unit volume. The term       . ] s Griffith Tht T^   TraHiüUm MM ^ 
erp(±jki) m the above equationr cm be expanded    Univereitv Press. London. f96i) n .« equat expanded    Univeräity Pros, LOT*», I961), p."M." 
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Equation (19) is clearly the multipole expausion of 
R»»'. In the cloctric-dipole approxinialion, only the 
first term in the expansion of exp(rfc»kr) is retained. 
The expression for };<ä) in Eq. {,18) should then reduce 
to the one obtained by Armstrong e! al* From Eq. (18), 
one finds readily the permutation symmetry for the 
generalized susceptibility tensor.7 

= >w(!)(ki= -kü+kj, Ul= -Olj+Ws) 

= Xn(in(2>(^ä=^3~^li«2 = £«'3 —Oil). (20) 

In a dense medium, there should also be a Lorentz- 
Lorenz correction factor in the exp-ession for j{(", but 
the permutation symmetry relation of }{®ä is 
unchanged.8 

Consider now the presence of three waves in the 
nonlinear medium. 

EM(r,/)=£m(0 exp(ikm • r-1«»/) 
-fcomplex conjugate (c.c.),   w= 1, 2, 3,    (21) 

k3=ki+ks,   ws^wi+wj, 

where |3£m(0/^l«i«-»Cm|- These three waves are 
coupled through the nonlinear susceptibility x<2), and 
consequently there is ene.gy transfer among them. We 
expect that a time-averaged energy for the coupling 
of the three waves should exist. The term involving 
coupling of the three waves in Eq. (2) is 

E-J<
S
>= E  E.'diwai, (22) 

m-I.S.J 

where we can write 

!*(/) = / <iijM€m(u, +Vm) exp[*kn-r-ja)m/-i,;m/]+c.c., 

f 
t » 

X exp[tki ■ r— i(«)i+J?S- 172)'] 

x(,,(«i=-wt+^):| (-wi)£2*We3W+-    -e.(0+£2*(/) 
dt 

+wJ - 
^■"("i) d^Mi a«,*© 

dut 
■+- 

3ui } dt 
-«:(.')+« i dtoj 

+ 

] 
'(«1)1 

Xexp(»ki- r-i«i/)+c.c, 

3/ 

96,(0 asm 
S&iuvut-uM (-w,)E,(/)£,*(0+- --«.*(/)+SsO) 

L 0/ dt ] 
(23) 

+«'2 
•3x(2)M  äx«'(«2)-| a£,(/) a£i*(0i 

9ü)I 

"I d£,w ^x.   r^K ^« ^^M-i      a£i*(.')| : £i*(/)+wJ :£3(0  
J     dt L    dw-t du)i    J dt    \ 

d ( T ä£i(/) d£,(0 
-«.«'W«   K(2)(<-3="i+^):| (-to)3)£.(0S2(/)4—EJW+SI« 
dt 

dtj>i    J di 

X exp (tkj ■ r— J«J/)+C.C. , 

dt dt ] 
rd^M dxa){^y rdje^'w  ^"'(o,,)-! as,(0 raK(S,^3)  ax(2)(^)-|      96,(0] 

+WJ +   : £:(/)+w.J + :£i(/)  
L    öu), dui    J     dt L    dwj do>i    J dl    I 

Xexp(jkj-r—iW)+c.c. 

From the above expressionsv and with  the help of be shown that the time average of Eq. (22) is given by 
permutation s^metry of ^ in Eq. (20), it can readily E    ^.^^ dt)„.aü*>/9t,         (24) 

• J. Armstrong, N. Bloemljcrgen, J. Ducuing, and P. S. Pershan, w-l.s.j 
Phys. Rev. 127, 1918 (1962). 

7 Permutation symmetry for Jj"' in the elcttric-dijiolc approxi- now defined 'or each vave with wave vector k andfrequency a 
mation was derived in Ref. 6. separately. The Lorcntz tensor L,, is a function of both k"s and 

• Tbc proof of this statement is given in Ref. 6 for the electric- w's. Both the linear polarizahility a''* and the Lorentz tensOi Li,- 
dipole approximation. However, ir can also he applied to the are self-adjoint and the derivation in Ref. 6 should be modified 
present ^ase with slight modification. Equation (Al) in Krf, 6 is accordingly. 
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where the time-averaged coupling density stored in the 
medium is 

(7»> = 2e.1*(0-Äa)(«i):fi«*(06.W 

r  axw(«i)     dy^bi) 
+ 6i*- wi l-wj  

L        do>i du* 

^-»-»e,»«)- • • £.*W2c(,"'(kn+1)Wn+1)€n+1(/) 

+ 6i*(0---£ 

+ur- 
axa)Mi 

dui J 

X£,+i(0+c.c.    (28) 

dwi 
■.et*m,(t)+c.c.  (25) 

More generally, one can show, from the microscopic 
expression for gW for a nondissipative medium, the 
general permutation symmetry 

n n 

Xi.+i.i.-u<",*(k^n=E k„ «^.,=2 «.) 
i-l i-t 

= Xii"U.i.+i<")(ki=-E M-k-M-i, 

ü)I=—L w<+w,+i) 

— " ■ " — X'n.'n+l.fl—'n-l1     \*ii—»n+l      2^   »«i 

««=".+1—S "<).    (26) 

Conversely, the existence of Üin) in the form of Eq. 
(28) implies the permutation symmetry for ^"K The 
energy conservation relation of Eq. (2) after time 
average can now be written as 

where 
(c/4ir)V-(EXB)=-dÜ/dt, 

n-I 

With Eq. (26), one finds 

»+i 
E {t*d%m<'>/dt)„=dV<*'/dt,      (27) 
»-I 

where the time-averaged energy density stored in the 
nonlinear medium for the coupling of the (« + !) waves 

with ÜM and tr(-> (n>2) given by Eqs. (8) and (28), 
respectively. 

In conclusion, we have shown in this paper that the 
permutation symmetry of the generalized nonlinear 
susceptibilities leads to the existence of a time-averaged 
stored energy density for electromagnetic wave propa- 
gation in a nonlinear, nondissipative, but dispersive 
medium.* The discussion can of course be generalized 
to include other types of excitational waves in the 
medium. 

'The derivation here is strictly correct only for waves with 
ki-ki + k« and ui=wi+ut. However, it is» also a good approxi- 
mation when these matching conditions are approximately satis- 
fied. This is in the same spirit as one can define a linear dielectric 
constant «(u) for s pulse of waves of frequency u its long as u is 
much larger than the inverse of the pulse width. 


